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Preface

Compared to other areas of research in the social sciences and even in education,
Educational Effectiveness Research (EER) has had a relatively short history of
about 40 years. This short history is, however, already fairly well documented
and in most cases the authors have given recommendations for the development
of EER in the future. However, although there have been many reviews and
several handbooks focusing on EER, there has been little systematic attention
paid to documenting and analysing methodological advances. In this book,
therefore, we seek to provide an overview of the methodological development
of EER and make a plea for a more theoretical orientation in educational
effectiveness, for more experimental and longitudinal research and for further
rigorous evaluation of improvement projects in schools and classrooms.

We were already convinced – and after reading the contributions to this
publication our conviction has been strengthened – that EER makes progress
through the advancements in the research methodology of, and the statistical
techniques used in, the analysis of relevant hierarchically structured data sets.
However, in our view it is not only the quality of the research design, the
instruments and the statistical analysis that promote the knowledge base of
educational effectiveness but also the development of better theories about the
complex nature of educational effectiveness. In our opinion, the theoretical
development of educational effectiveness both asked for and also promoted
methodological advances, and the further development of educational effective-
ness theory is thus facilitated by various methodological and technical advances
that have been made over the last two decades or so. These advances have enabled
researchers to test the various components of theories of educational effectiveness
and to evaluate improvement practices, which in turn have pushed our thinking
and theory development further.

In this publication we concentrate on describing and explaining the main
methodological advances that we believe will help readers to improve the quality
of future EER studies. Thus, we do not restrict ourselves to a simple overview
of different research tools, but instead we choose to present them from the
perspective of the development and testing of a theoretical body of knowledge
about effectiveness. For this reason we provide the readers in the first part of



the book with an analysis of the background to EER, an account of the advances
in research and theory made in the past and an analysis of the mutual relationship
between methodological advances and progress in theory development. Special
attention is given to two issues related to our theoretical orientation in educational
effectiveness: first, the difficulties in demonstrating causal relations between 
the various context, input, output and process factors of interest in EER and
the most fruitful avenues for identifying causality, and second, an analysis of the
implications of this orientation for research design. The second issue is concerned
with the purpose of EER, to have an impact on educational practice in classes,
schools and on policy and ways to promote this impact and evaluate it.

In the second part of the book – the main core of the publication – we
provide readers with a state-of-the-art overview of advances in the EER
methodology with respect to design measurement theories and data analysis.
Experts in each of the areas (in most cases in collaboration with the editors)
provide the background to each of the specific approaches of particular interest,
present a comprehensive overview and give examples of the use of the approach
and/or technique in specific EER studies to illustrate their application. After
this presentation of advances made in research design, measurement and data
analysis, we return in the third part of the book to a discussion of the main
implications for EER. We draw conclusions about the implications of such
methodological advancements for the future of EER, especially with respect to
the prospect for improved development and testing of theories about educational
effectiveness, which can have an impact on practice and policy. In order to
promote excellence in research we provide readers with an instrument (which
we regard as analogous to a conceptual road map or guide) that will support
them in making decisions in the development of their own research plans and
in the implementation of those plans.

In writing this book we received support from many colleagues, policymakers,
practitioners and our families. We would like to mention some of them, especially
the following. Our colleague Dr James Hall provided us with constructive
feedback of the early draft of the book and challenged us to sharpen our
arguments. Our friend Ioannis Yiannakis, who is currently an inspector and used
to be a teacher for many years, gave us comments that helped us identify the
extent to which our work could contribute in the improvement of policy and
practice. We also thank him for helping us to draft figures of the proposed
conceptual map for conducting methodologically appropriate effectiveness studies.
The research assistants on our team and especially our PhD students gave us
comments from the perspective of young researchers in the field of EER. Evi
Charalambous helped us in the production of the manuscript and supported us
in the process of linguistic editing. Finally, our universities were supportive in
facilitating our academic efforts to write the book.

As we have already mentioned, in producing this volume our main purpose
is to promote future high-quality research in educational effectiveness. We see
the current advancements in methodology and statistical techniques as great
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opportunities to improve the quality of EER. Moreover, the relationship can be
seen as reciprocal because, as we show, some of the key advancements have been
promoted and fostered by research in the educational effectiveness field. We
welcome comments, criticism and contributions to its further development and
anticipate that new knowledge will be produced by readers with different
perspectives in education and research. We hope that readers, and especially
students, will be challenged to conduct high-quality research in this area in order
to contribute to the growing EER evidence base and to enhance current
understanding and the use of EER in the improvement of educational practice.

xiv Preface



The state of the art of
Educational Effectiveness
Research
Challenges for research methodology

Part A





Background to Educational
Effectiveness Research

Introduction

The essential difference between this book and other books on research
methodology is a focus on methodological advances in a specific area within
research on education, namely Educational Effectiveness Research (EER). Thus,
this introductory chapter offers a background to EER and helps readers recognize
the importance of the progress that has been made in research methodology for
this field. This chapter also seeks to enable EER researchers to identify ways of
making use of advanced research methods that will further promote the
development of this field. At the same time, this chapter also provides readers
who are more generally interested in research methodology with a brief account
of the background to EER in order to help them understand the specific context
in which advanced research methods can be applied and so contribute to the
ongoing development of this field.

In this introductory chapter we give a short outline of the history of EER,
identify its essential characteristics and illustrate the strengths and weaknesses of
this field. The progress made in modelling educational effectiveness is presented
and major research questions are identified that have implications for the choice
of most appropriate research methodology. It is shown that developments in
research methodology, such as in multilevel modelling to analyse nested data,
have promoted the knowledge base of educational effectiveness. Further, this
chapter outlines attempts by researchers to establish theoretical models and
describes how the complexity of educational effectiveness has provided challenges
to the development of methodologically appropriate studies, including ways of
analysing data. Finally, the aims of this book and its structure are then outlined.

Educational Effectiveness Research can be seen as an overarching theme that
links together a conglomerate of research in different areas, including research
on teacher behaviour and its impacts; curriculum; student grouping procedures;
school organization; and educational policy. The main research question
underlying EER is the identification and investigation of which factors in the
teaching, curriculum and learning environments (operating at different levels,
such as the classroom, the school, and levels above the school) can directly or
indirectly explain measured differences (variations) in the outcomes of students.

Chapter 1



Further, such research frequently takes into account the influence of other
important background characteristics, such as student ability, socio-economic
status (SES) and prior attainment. Thus, EER attempts to establish and test
theories that explain why and how some schools and teachers are more effective
than others in promoting better outcomes for students. However, it is also
important to note that the three terms – school effectiveness, teacher effectiveness
and educational effectiveness – are used inconsistently in the literature and that
these are themselves interrelated. In this book, ‘school effectiveness’ is taken to
mean the impact that school-wide factors, such as a school policy for teaching,
school climate and the ‘mission’ of a school, have on students’ cognitive and
affective performance. On the other hand, ‘teacher effectiveness’ is taken to mean
the impact that classroom factors have on student performance, and includes
teacher behaviour, teacher expectations, classroom organization and use of
classroom resources.

Teddlie (1994) argued that most teacher effectiveness studies have been
concerned only with the processes that occur within classrooms, to the exclusion
of school-wide factors, whereas most school effectiveness studies have involved
phenomena that occur throughout the school with little emphasis on particular
teaching behaviours within individual classrooms. Only a few EER studies have
attempted to examine both school and classroom effectiveness simultaneously
(Mortimore et al. 1988; Teddlie and Stringfield 1993), although this weakness
has begun to be addressed in recent studies (de Jong et al. 2004; Kyriakides
2005; Reynolds et al. 2002; Opdenakker and Van Damme 2000). The attempts
to deal with both teacher and school influences can be seen as a significant
development in EER, since joint studies on school and teacher effectiveness reveal
that neither level can be adequately studied without considering the other
(Reynolds et al. 2002). In this context, we are using the term educational
effectiveness rather than teacher and/or school effectiveness to emphasize the
importance of conducting joint school and teacher effectiveness research, which
can help us identify interactions between the school, classroom and student levels
and their contributions in explaining variation in student outcomes, both
cognitive and non-cognitive. Finally, it is important to note that EER also refers
to the functioning of the educational system as a whole, and this research can,
therefore, also be used to support the development and testing of different models
of effectiveness (Creemers 1994; Creemers and Kyriakides 2008; Scheerens 1992;
Stringfield and Slavin 1992). In turn, these models of effectiveness ultimately
attempt to explain why educational systems and their subcomponents perform
differently, with the aim of providing relevant evidence for policymakers.

History of Educational Effectiveness Research

The origins of EER largely stem from reactions to seminal works on equality 
of opportunity in education that were conducted in the United States and
undertaken by Coleman et al. (1966) and Jencks et al. (1972). These two

4 The art of Educational Effectiveness Research



innovative studies from two different disciplinary backgrounds – sociology and
psychology, respectively – drew very similar conclusions in relation to the amount
of variance in student outcomes that can be explained by educational factors.
Although the studies did not suggest schooling was unimportant, the differences
in student outcomes that were attributable to attending one school rather than
another were modest. However, these studies were also criticized for failing to
measure the educational variables that were of the most relevance (Madaus et
al. 1979). Nevertheless, it is important to note that these two studies both
claimed that, after taking into consideration the influence of student background
characteristics such as ability and family background (for example, race and SES),
only a small proportion of the variation in student achievement could be
attributed to the school or educational factors. This pessimistic sense of not
knowing what, if anything, education could contribute to reducing inequality
in educational outcomes and in society as a whole was also fed by the apparent
failure of large-scale educational compensatory programmes, such as ‘Headstart’
and ‘Follow Through’ conducted in the United States, which were based on
the idea that education in pre-school/schools would help compensate for initial
differences between students. Similarly disappointing results have since also been
reported for the effects of compensatory programmes that have been conducted
in other countries (Driessen and Mulder 1999; MacDonald 1991; Schon 1971;
Taggart and Sammons 1999; Sammons et al. 2003).

The first two school effectiveness studies that were independently undertaken
by Edmonds (1979) in the United States and Rutter et al. (1979) in England
during the 1970s were concerned with examining evidence and making an
argument about the potential power of schooling to make a difference in the
life chances of students. This was an optimistic point of view, because many
studies published in that period had shown that teachers, schools and maybe
even education in general had failed to make much of a difference. The early
appearance of these two independent research projects in different countries that
asked similar questions and drew, to a certain extent, on similar quantitative
methodologies demonstrated the potential for establishing a scientific domain
dealing with effectiveness in education (Kyriakides 2006). Thus, the publications
by Brookover et al. (1979) and Rutter et al. (1979) were followed by numerous
studies in different countries on educational effectiveness and the development
of international interest and collaboration through the creation of the Inter-
national Congress for School Effectiveness and Improvement (ICSEI) in 1990
(Teddlie and Reynolds 2000). Looking at the history of EER, we see four
sequential phases in the field, which address different types of research questions
and promote the theoretical development of EER.

• First phase: a focus on the size of school effects. Establishing the field
by showing that ‘school matters’.
During the early 1980s, the studies that were conducted attempted to show
that there were differences in the impact that particular teachers and schools
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have on student outcomes. This research showed how important it is for
students to have effective teachers and schools, and that school and teacher
effects tend to be larger for disadvantaged groups (Scheerens and Bosker
1997).

• Second phase: a focus on the characteristics/correlates of effectiveness.
Searching for factors associated with better student outcomes.
In the late 1980s and early 1990s, researchers in the area of EER were
mainly concerned with identifying factors that were associated with student
outcomes. These studies resulted in a list of factors that were treated as
characteristics of effective teachers and schools (Levine and Lezotte 1990;
Sammons et al. 1995; Scheerens and Bosker 1997).

• Third phase: modelling educational effectiveness. The development of
theoretical models that show why specific factors are important in
explaining variation in student outcomes.
By the late 1990s and early 2000s several integrated models of educational
effectiveness (Creemers 1994; Scheerens 1992; Stringfield and Slavin 1992)
had been developed. These models sought to explain why factors that
operate at different levels are associated with student outcomes, and these
models guided not only the theoretical development of EER but also the
design of empirical studies within this field (Kyriakides et al. 2000; de Jong
et al. 2004).

• Fourth phase: focus on complexity. A more detailed analysis of the
complex nature of educational effectiveness that developed further links
with the study of school improvement.
A gradual movement from the third to fourth phase was observed particularly
after 2000. This featured a focus on change over time and addressed issues
such as consistency, stability, differential effectiveness and departmental
effects. Researchers increasingly gave attention to the study of complexity
in education and pointed to the fact that the theoretical models of the 
third phase had not emphasized the dynamic perspective of education nor
had they paid sufficient attention to the differential character of some 
factors (Creemers and Kyriakides 2006). Moreover, this gradual movement
also saw an interest develop in investigating the question of changes in 
the effectiveness of schools, rather than exploring the extent of stability 
in effectiveness (Kyriakides and Creemers 2009). The move away from
seeing effectiveness as an essentially stable characteristic of different schools
or teachers to one that varies across years, and may differ for different
student outcomes or in relation to different student groups, places change
at the heart of EER. As such, the field became increasingly linked with the
growth of larger scale, systematic investigations of the long-term effect of
teachers and schools (Kyriakides et al. 2009; Pustjens et al. 2004). As a
consequence, EER is seeing a growth in interest concerning the processes
of school improvement, which is leading to the use of new theoreties such
as the dynamic model (Creemers and Kyriakides 2008). Such developments
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also point to the value of building links with other research areas such as
organizational change in educational administration.

Although these four phases are analysed in more detail below, it is argued
that EER has gradually evolved from focusing on a single issue (that is, schools
and education ‘matter’) into a more intellectually sophisticated and mature area
within the educational sciences. This has come about through EER trying to
explain the complex and essentially dynamic nature of educational effectiveness
and educational change. In this book, it is stressed that the above theoretical
developments in the field were greatly facilitated by developments in research
methodology that were increasingly adopted by EER in order to understand the
complexity of the links between educational processes and outcomes. As a result,
during these four phases one can also observe further parallel development in
the methods used within EER. For example, there has been a movement from
outlier studies (during phase one) to cohort studies (phases two and three) and
most recently to longitudinal and experimental studies (phases three and four).
Advanced techniques in analysing the data of effectiveness studies can be especially
identified after the mid-1980s when multilevel modelling techniques (Goldstein
1995) were systematically employed. Therefore, it can be assumed that further
developments in the field will continue to involve close links between theoretical
and methodological advances.

First phase: establishing the field by showing that
school matters

The studies from the first phase of EER were mainly concerned with revealing
that teachers and schools differ among themselves in their impact on student
performance and thereby that student progress in part depends on who is their
teacher and which school they attend. The extent to which schools differ was
the next question raised by researchers in the field, with a more precise version
of this question being how much schools differ in terms of student outcomes
when they are more or less equal in terms of the innate abilities and socio-
economic background of their students (using statistical controls for variations
in student intake characteristics). EER aimed to make fair comparisons between
teachers and schools in order to assess the impact of schooling on student
achievement that could be uniquely attributed to, for example, teacher A or
school X, rather teacher B or school Y. Such research was enabled through the
use of multilevel models that allowed for clustering of the data at the teacher
(class) level and at the school level, which enabled more precise estimates of
variation between schools and the identification of individual school effects
(through residual estimates and their associated confidence limits). By the end
of this phase, a clear message about the important role of teachers and schools
had emerged from a large number of studies conducted in various countries and
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these provided a strong argument against critics who had argued that teachers
and schools did not matter for student outcomes (Scheerens and Bosker 1997;
Teddlie and Reynolds 2000). However, the issue of educational effectiveness
did not end by assessing the differences between schools and teachers in terms
of their effectiveness. Rather, this was merely a prelude to exploring what matters
in schools.

Second phase: searching for factors associated with
student outcomes

The main research question of the second phase of EER attempted to identify
those factors that help to explain differences in the effectiveness of schools. The
results of studies conducted during this phase produced lists of correlates that
were associated with better student achievement and which were treated as key
effectiveness factors. One of the first of these was concerned with the so-called
‘five-factor model’ (Edmonds 1979). These five correlates of educational
achievements were:

• strong educational leadership;
• high expectations of student achievement;
• an emphasis on basic skills;
• a safe and orderly climate;
• frequent evaluation of student progress.

This initial model has since been criticized on methodological (Ralph and
Fennessey 1983) and also conceptual grounds (Scheerens and Creemers 1989).
However, more refined models of educational effectiveness were also developed
from this (Clauset and Gaynor 1982; Duckworth 1983; Ellett and Walberg 1979;
Glasman and Biniaminov 1981; Murphy et al. 1982; Schmuck 1980; Stringfield
and Slavin 1992; Squires et al. 1983). These later models elaborated on the
framework for a causal model of educational effectiveness as developed by
Scheerens and Creemers (1989). This framework stressed the fact that various
levels in education can be seen to contribute to variations in student performance.
The characteristics for educational effectiveness that are found in this phase of
research can also be placed (that is, be seen to operate) at different levels.
However, this framework does not answer why certain characteristics correlate
positively with achievement. Finally, it is also important to note that reviews of
the results of the studies conducted during this phase (Levine and Lezzotte
1990; Sammons et al. 1995) resulted in numerous correlates for effective
classrooms, schools and above-school levels (districts, states, country). Together,
these studies emphasized once more the importance of further developing the
relatively limited theoretical foundation of EER by including the combination
of correlates into categories.
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Third Phase: development of theoretical models

The third phase of EER saw researchers use several theoretical orientations 
to help explain why certain characteristics might contribute to educational
effectiveness (Scheerens and Bosker 1997). Generally speaking, there are three
perspectives within EER in this phase, which attempted to explain why and how
certain characteristics contribute to educational effectiveness, and three relevant
theoretical models that emerged from these approaches.

First, in order to explain variation in the effectiveness of teachers and schools,
economists have focused on variables concerned with resource inputs, such as
per-student expenditure. Specifically, this economic approach is focused on
producing a mathematical function that reveals the relationship between the
‘supply of selected purchased schooling inputs and educational outcomes
controlling for the influence of various background features’ (Monk 1992: 308).
This function may be viewed as either linear, consisting of main effects and
interaction effects, or nonlinear (Brown and Saks 1986). Thus, the associated
emergence of ‘education production’ models (Brown and Saks 1986; Elberts
and Stone 1988) were based on the assumption that increased inputs will lead
to increments in outcomes. These models are mainly concerned with: (a) the
selection of relevant resource inputs as the major type of selection of antecedent
condition, (b) the measurement of direct effects, and (c) the use of data at only
one level of aggregation (that is, either at micro [for example, student] level or
aggregated [for example, school] level).

The second model to emerge from this phase of EER featured a sociological
perspective and focused on factors that define the educational and family
background of students, such as SES, ethnic group, gender, social-capital and
peer group. This perspective examined not only student outcomes but also the
extent to which schools manage to ameliorate or increase the variation in student
outcomes when compared to prior achievement. Two dimensions of measuring
school effectiveness emerged from this perspective and concerned the quality of
schools (students reaching high outcomes) and enhancing the equity in schools
(reducing the achievement gaps between advantaged and disadvantaged groups).
Moreover, the sociological perspective also brought attention to school processes
that emerged from organizational theories (including climate, culture and
structure) and to contexts such as the concentration of disadvantaged students
and the impacts of this on student outcomes and school and classroom processes.

Finally, educational psychologists in this period focused on student back-
ground factors such as ‘learning aptitude’ and ‘motivation’, and on variables
measuring the learning processes that take place in classrooms. Further, an
interest in identifying and understanding the features of effective instruction
practice was also observed and led to a list of teacher behaviours that were
positively and consistently correlated with student achievement over time. For
example, Rosenshine (1983) identified general teacher factors associated with
achievement, which he labelled the ‘direct instruction model’ of teaching,
sometimes called a ‘structured approach’. From this, a slightly different model
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called ‘active teaching’, with more emphasis put on the involvement of students
in the learning and teaching process, was then also developed.

However, more recent research on teaching has featured a gradual trend
toward less interest in teacher behaviour and the effects of teacher and
instructional behaviour, and more interest in teacher cognition and teacher
thinking about their professional practice (Creemers 2008). Within EER at this
time, attention was initially directed to the effects of schools; however, after the
introduction of multilevel analysis and a more theoretical orientation of EER,
more emphasis was put on the learning and instructional level (Teddlie and
Reynolds 2000). Theoretically, it was expected that student outcomes were
related to learning activities that take place mostly at the learning/instructional
level. This resulted in a re-orientation, empirically and theoretically, of effective -
ness research toward a more explicit focus on the processes taking place at the
teaching/learning level. Factors at the classroom level or the teaching and
learning level are therefore seen as the primary effectiveness factors (Creemers
and Kyriakides 2008). When a better foundation for EER was sought, this was
therefore also concerned with an orientation towards developing theories and
models about learning in schools. These theories and models were seen as a
possible bridge between learning outcomes, which are used as criteria for
effectiveness, and processes at the classroom and school level.

Fourth phase: analysing in more detail the complex
nature of educational effectiveness

During the fourth phase, researchers attempted to respond to a major criticism
of earlier EER that was concerned with the failure of the field to contribute
significantly to the establishment of strong links between research on effective
factors and developmental work intended to improve the quality of education.
However, a dynamic perspective on education is now being taken into account
more explicitly in theoretical and empirical EER studies (Creemers and Kyriakides
2006). Thus, in this phase, teaching and learning are seen as dynamic processes
that are constantly adapting to changing needs and opportunities. This thereby
has seen studies investigating the process of change in schools gradually emerge
(Opdenakker and Van Damme 2006), which has had implications for modelling
educational effectiveness in a way that takes into account the complex nature of
education (Creemers and Kyriakides 2008). Moreover, such studies have helped
us look at the functioning of each effectiveness factor using a dynamic rather
than an instrumental perspective. This also implies that specific developments in
the methodology of EER are needed since this research does not support the
traditional approach of modelling effectiveness as a static feature or attribute of
schools or teachers. Modelling effectiveness or change should not be restricted
to fitting conditional models in which measures of student learning outcomes
(adjusted for background characteristics such as SES, gender and prior
knowledge) are regressed on a set of explanatory variables. Further, measures of
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change based on only one or two time points are also unreliable (Bryk and
Raudenbush 1987; Goldstein 1997; Willet 1988) and so provide an inadequate
basis for studying change (Bryk and Weisberg 1977; Rogosa et al. 1982).

Therefore, the approach promoted in the current phase of EER does not
place undue emphasis on measuring the short-term outcomes of the immediate
effect of schools and teachers on student achievement gains during a single school
year. In contrast, this approach instead reveals a need for longitudinal research
to study results of schools and classrooms and their functioning over a longer
period, modelling the growth in student outcomes over at least three time
points. The progress made in the way educational effectiveness is conceptualized
by EER also reveals that theoretical developments in the field have been facilitated
by several methodological developments, as is shown in the next section.

Methodological developments promoting
theory and research on effectiveness

This section attempts to show that much of the progress in EER is due to
advances in methodology made during the last 30 years. During the first phase
of EER, major emphasis was given to conducting outlier studies and comparing
the characteristics of more effective schools with those of less effective schools
(for example, the Louisiana Study). However, the emphasis on identifying outliers
was criticized both for conceptual and methodological reasons (Goldstein 1997).
During the 1980s, researchers moved to the use of mainly cohort and longitudinal
designs involving larger numbers of schools and students, and such studies
multiplied in the 1990s. In addition, the development of hierarchical regression
approaches involving multilevel modelling techniques enabled researchers in the
area to take the multilevel structure of educational systems into consideration
and thereby deal with the methodological weaknesses of earlier studies that used
only uni-level regression analysis (for example, the Fifteen thousand hours study
by Rutter et al. 1979). Early examples of studies that made use of hierarchical
regression approaches include the School matters study (Mortimore et al. 1988)
and the Young children at school in the inner city research (Tizard et al. 1988)
in England. Gradually, the way of measuring the links between inputs, outcomes
and processes became more sophisticated, particularly through the development
of contextual value-added models that controlled for student level, prior
attainment and background as well as contextual measures of school or class
composition (Sammons et al. 1997). Moreover, progress in the area of developing
tests and other assessments helped researchers establish better measures of
achievement not only in the area of basic skills such as reading, writing and
mathematics but also in higher-level cognitive outcomes, and even in the affective
and social domains.

During the second and third phase of EER, a large number of reviews were
conducted and their main purpose was to provide the research community and
policymakers with the latest developments from the field (Creemers and Reezigt
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1996; Levine and Lezotte 1990; Sammons et al. 1995). However, although
these reviews were usually based on a collection of studies that were seen by the
authors as providing good examples of research (Creemers and Reezigt 1996,
Sammons et al. 1995), their judgements of the methodological deficiency of
studies that were excluded were not necessarily systematic and were often based
on implicit rather than explicit criteria. On the other hand, the reviews that were
not selective resulted in a huge number of factors for which not much information
about their empirical support was provided (Levine and Lezotte 1990). As a
consequence, the results of these early reviews can be questioned. In this context,
carrying out meta-analyses using advanced quantitative approaches can be seen
as a major methodological development that promotes theoretical development
in the field and enables researchers to identify generic and more specific factors
the impact of which is dependent on the educational setting in which they are
operating (Scheerens and Bosker 1997).

During the third and the fourth phases of EER, emphasis was given not only
to searching for predictors with direct effects on student outcomes but also those
with indirect effects (for example in studies of school leadership and the links
with student outcomes (Silins and Mulford 2002). Moreover, the theoretical
models that have been developed during this phase refer to relations among
factors situated at different levels (Creemers and Kyriakides 2008; Scheerens and
Bosker 1997). In this context, the development of multilevel Structural Equation
Modelling (SEM) approaches (Heck and Thomas 2000; Hox 2002; Muthén
1997) enables researchers to search for indirect effects and/or test the validity
of the current models of EER in relation to this assumption (de Fraine et al.
2007; de Maeyer et al. 2007).

During the fourth phase of EER, emphasis has been given to modelling the
dynamic nature of effectiveness. This implies, among other things, that longitu-
dinal studies that last for at least three years should be conducted in order not
only to measure the long-term effect of schools and teachers but also to find
out how changes in the functioning of factors are associated with changes 
in educational effectiveness (Kyriakides and Creemers 2009). For this reason,
developments in advanced quantitative research methods such as the use of
growth modelling techniques are to be welcomed because they can help us answer
such research questions. Moreover, conducting longitudinal studies enables
researchers to search for reciprocal relations that, according to current theoretical
developments in the field of EER, are expected to exist. Such relations are often
included in relevant statistical models and refer to the relation of student factors
that are likely to change with achievement (Creemers and Kyriakides 2008). For
example, advanced SEM techniques can be used to search for reciprocal relations
between motivation or academic self-concept and student achievement by making
use of data collected at different points of time (Marsh et al. 2006).

At this point, we would like to claim that a challenge for EER is to make
better use of current developments and progress in research methodology and
to provide empirical support for new ways of conceptualizing the dynamic nature
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of educational effectiveness. At the same time, it is acknowledged that the
knowledge base of educational effectiveness and its attempt to establish theoretical
models challenge the development of methodologically appropriate studies and
ways of analysing data. An example is the development of SEM and multilevel
techniques, which help EER to search not only for linear but also for non-linear
relations between effectiveness factors and student achievement. Furthermore,
a challenge for EER research methodology is to establish and use advanced
quantitative techniques that will identify meaningful groupings of factors
(Kyriakides et al. 2009). Such a development would contribute to the establish-
ment of stronger links between EER and those who are involved in school/
teacher development or improvement projects that seek to promote better
practice (defined as that which promotes better outcomes for students) and offers
the hope that more comprehensive strategies for school improvement will
eventually emerge.

Aims and outline of the book

The aims of the book

The main aim of this book is to provide an authoritative account of the history
and current developments in the methodology of EER and the way EER has
evolved and is being applied in research and evaluation. By doing so, we hope
to promote the further development of theory and research in educational
effectiveness, which in turn depends on the further development of research
methodology. At the same time, this book shows that the knowledge base of
educational effectiveness and its attempt to establish theoretical models offer a
challenge to the development of methodologically appropriate studies, including
better ways of analysing clustered data. Next to this more theoretical perspective
of the book, there is also a very practical argument for the promotion of the
appropriate use of advanced research techniques by researchers in the area of
EER. We try to do so by giving a sufficient background for each method and
cite examples of using each within the context of EER.

The nature and structure of the book

This book is organized in three parts, which feature a summary of the main
points therein. In the last chapter, the main conclusions emerging from the book
are then outlined and their implications for further methodological development
are considered.

Part A presents an overview of the state of the art of educational effectiveness
studies and pinpoints challenges for the development of EER and research
methodology. Chapter 2 provides an overview of major methodological issues
in EER. More specifically, this chapter refers to the main research questions
prevalent in EER and how these are related to methodological issues that are
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connected to both designing studies and using advanced techniques to analyse
quantitative and qualitative data, including their integration in mixed-methods
designs. Moreover, issues concerned with the development of appropriate
instruments and the process of investigating their psychometric properties are
also discussed. In Chapter 3 by contrast, we argue that searching for causality
is an important issue within EER since it promotes the theoretical and method -
ological development of the field. We also discuss causality’s meaning and how
it can be addressed by looking at different orientations within the research
methodology. In the last chapter of this part of the book, we discuss the impact
of EER on the design and evaluation of reform policies and the establishment
of strategies to improve practice. It is argued that EER can contribute to the
development of theory-driven evaluation studies that will serve both policymakers
and educational practice, as well as promoting further theoretical development
of the field. Thus, in this chapter, we provide guidelines to readers on how to
design theory-driven evaluation studies that will contribute to the establishment
of an evidence-based approach in policymaking and a theory-driven approach
to improving education.

In Part B, each chapter is designed to help the readers understand why 
each methodological orientation is important for EER, and the mathematical
background of each technique is summarized to help readers understand its
current and future applications. Specific examples of applying each orientation
are offered to help readers design their own effectiveness studies using the method -
o logical tools presented here. The sequence used to present the methodological
tools of EER follows the main decisions that have to be taken in designing
original studies. Initially, different types of original studies are presented before
we then refer to the two main measurement theories that can be used to develop
research instruments and test their validity. Next, advanced statistical tech-
niques that can be used to analyse nested and longitudinal data are presented
before, finally, we then promote the use of meta-analyses and secondary analyses
of international studies and explain how to conduct them. Specifically, in Chapters
5, 6 and 7, we illustrate the importance of using different types of research
design in EER (that is, longitudinal studies, experimental studies and mixed
research methods, respectively). It is shown that each research method can
address specific research questions in an appropriate way. Chapters 8, 9 and 10
refer to two different measurement theories and show how Item Response
Theory and Generalizability Theory can be used for developing and testing the
validity of psychometrically appropriate research instruments. The next two
chapters (11 and 12) refer to advanced techniques in analysing data. Chapter
11 examines the use of multilevel modelling techniques and their application,
whereas Structural Equation Modelling techniques are discussed in Chapter 12.
Finally, Chapter 13 examines the importance of conducting quantitative syntheses
of original studies. The importance of testing and developing theoretical models
of educational effectiveness by conducting meta-analyses is also stressed. Beyond
illustrating how meta-analyses can be conducted to search for generic and
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differential factors of effectiveness, we also refer to the importance of conducting
secondary analyses of comparative international studies such as the Programme
for International Student Assessment (PISA) and the Third International
Mathematics and Science Study (TIMSS). Advantages and limitations of these
approaches are also discussed.

In the very last part of the book, we relate the further development of theory
and research in educational effectiveness to current trends and advances in the
methodology used within the social sciences. Topics for further development
concerning both EER and research methodology that are adopted in such studies
are identified and a conceptual map for further methodological advancements
in EER is provided.
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Methodological issues in
Educational Effectiveness
Research

Introduction

In this chapter, we analyse the current (fourth) phase of EER, examine the main
research questions that form the foci of educational effectiveness enquiry and
analyse methodological issues that should be taken into account when designing
studies, as well as in analysing quantitative and qualitative data. These issues are
presented to show the contribution research methodology has made and can
make to the development of EER, before further clarification of the methodolo-
gies themselves and how they can be used is presented in the second part 
of the book. As mentioned in the introductory chapter, the current phase of
EER is concerned with promoting a better understanding of the complex and 
dynamic nature of educational effectiveness. Thus, this chapter is concerned with
methodological issues that have important implications, especially for modelling
effectiveness, and the next chapter discusses issues associated with the design of
studies that search for causal relations. More specifically, causality is a general
issue in EER, and almost all effectiveness studies deal in one way or another
with hypothesized (or implied) cause-and-effect relations by searching for factors
that explain (in a statistical sense) variation in student outcomes. Further, this
is usually in terms of academic achievement tests or measures of some kind.
However, EER also encounters frequent difficulties in claiming cause-and-effect
relations due to the non-experimental nature of most EER designs. In the 
last chapter of the first part of this book we acknowledge that the emphasis
given by the current phase of EER to the dynamic perspective of educational
effectiveness draws attention to the importance of searching for predictors of
the processes of school improvement. This implies that researchers should not
restrict themselves when describing effective practices to only those features that
can be observed in schools. Instead, EER should also contribute to the design
of theory-driven improvement strategies and in developing measures of their
impact on changes in the effectiveness of teachers and schools over time. Since
this shift in the research agenda of EER raises specific methodological issues, it
is discussed in more detail in Chapter 4, which is concerned with establishing
links between EER and policy and practice.

Chapter 2



The methodological issues that are presented in the next section of this
chapter refer to the contribution of research methodology in modelling effective-
ness. Within this, it is taken as essential that researchers should attempt to search
for more complex relations (direct, indirect and reciprocal) between different
student, classroom/teacher and school factors and change in student achieve-
ment or other outcomes. Further, it is also taken as necessary for researchers to
explore potential relations among factors operating at the same or at different
levels in order to describe the complex nature of educational effectiveness. As
such, this section therefore discusses the methodological issues that are associated
with the need to search for generic and differential factors. It is acknowledged
that during the current phase of EER there is a need to make a distinction
between generic and differential factors and identify those that are common across
different educational settings and those that are differential or specific, where
the size of their effect depends on the setting in which they are operating
(Campbell et al. 2004; Kyriakides 2007). Thus, a methodological issue stemming
from this is not only how differential effectiveness can be investigated but also
how the results of such studies can be incorporated into our attempts to establish
generic and more context-specific models. Finally, an argument is made that
researchers should also attempt to conceptualize the dynamic nature of education,
which includes the need to look at ongoing changes in the functioning of
teachers and schools and how these are related to changes over time in their
effectiveness.

The emphasis that is given to the dynamic perspective of educational
effectiveness also implies that the stability of effects related to teachers and
schools over time cannot be seen as a necessarily clear measure of the reliability
of these concepts (as was assumed during the second and third phases of EER;
Kyriakides and Creemers 2008a). Thus, this chapter also discusses methodological
issues concerned with the research that should be conducted to search not only
for short but also for long-term effects of teachers and schools. These issues are
then compared with the processes that should be used in analysing data that is
collected for these different types of studies.

The last two sections of this chapter refer to some ongoing methodological
questions that have not yet been solved. Specifically, there is an initial discussion
of the possibility of research methodology enabling researchers to use different
outcomes of schooling as the criteria of effectiveness. Special emphasis is given
not only to the valid measurement of these outcomes but also to how they relate
to each other. This issue also brings to attention the importance of using
appropriate instruments to collect data. Thus, the last section of this chapter is
concerned with advances in measurement theory in order to improve the quality
of instruments that are used to measure not only student outcomes but also the
nature and functioning of different effectiveness factors.
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The contribution of research methodology in
modelling educational effectiveness

Modelling educational effectiveness was an important research issue during the
last (third) and current phases of EER. Moreover, the increasingly important
role of this modelling was already evident in the second phase since here it became
clear that EER should look at both classroom and school factors and that thus
only multilevel models were appropriate to describe educational effectiveness.
Following on from this during the third phase of EER, a number of studies
were conducted that tried to test the validity of the early theoretical models of
EER (Driessen and Sleegers 2000; Kyriakides et al. 2000; Reezigt et al. 1999).
These revealed a number of methodological issues that should be taken into
account in developing the theoretical framework of EER. These issues are
analysed below and were also partially products of studies that had searched for
the effect of school factors and especially factors such as leadership (Leithwood
and Jantzi 2006; de Maeyer et al. 2007; Robinson et al. 2008) and quantitative
syntheses of both school (Witziers et al. 2003; Scheerens and Bosker 1997) and
teacher effectiveness (Monk 1994; Seidel and Shavelson 2007). More specifically,
these studies made clear that both the direct and indirect effects on student
achievement of such factors should be examined.

Searching for direct and indirect effects of
factors on student achievement

In order to search for the relationships between significant educational factors
and student achievement, researchers have considered the use of multilevel SEM
models. These allow the specification of cross-level relationships by employing
multivariate multilevel modelling techniques, which allow the use of more than
one dependent variable. For example, the testing of a relationship between 
a factor concerned with school policy on the quantity of teaching and the
management of time by the teacher can be conducted by treating the school
factor (that is, school policy on quantity of teaching) as an explanatory variable
and treating both the classroom factor (that is, management of time) and student
achievement as simultaneous dependent variables.

Searching for relations between factors
operating at the same level

The methodological procedure used in multilevel modelling techniques to search
for cross-level relationships can also be used to search for relationships between
factors that are operating at the same level. Obviously such relations can also be
investigated through path analytic models. Searching for relations among factors
operating at the same level is also an issue that needs further attention for the
theoretical development of EER. This is not only due to different theoretical
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models referring to particular groups of factors but also because research on
instructional effectiveness has developed specific teaching approaches consisting
of combinations of particular teaching factors (for example, direct instruction, 
active teaching, new learning) that are seen as more effective than others.

Searching for nonlinear relations between
factors and student achievement

Meta-analyses of the effect of some effectiveness factors upon student achievement
has revealed that although they have been conceived of as having an impact on
teacher or school effectiveness, the research evidence for their role remains
problematic. For example, teacher subject knowledge is widely perceived as a
factor that affects teacher effectiveness (Scriven 1994), but teachers’ subject
know ledge, regardless of how it is measured, has only rarely been correlated
with student achievement in practice (Borich 1992; Darling-Hammond 2000).
The explanation may be, as Monk (1994) reported, that the relationship is curvi -
linear. In other words, a minimal level of knowledge is necessary for teachers to
be effective, but beyond a certain point, there may be a negative relation. Similar
findings have been reported for the association of self-efficacy beliefs with teacher
effectiveness (Schunk 1991; Stevenson et al. 1993) and for the impact of
classroom emotional climate and teacher management upon effective ness. These
findings imply that models of educational effectiveness should acknowledge that
nonlinear relations might exist and therefore that a search is needed for the
optimal values of factors that are nonlinearly related with achieve ment (Creemers
and Kyriakides 2006).

The challenge of this for modelling educational effectiveness has implications
for both the design and the analysis of effectiveness studies since the investigation
of nonlinear relations implies that more complex statistical techniques should
be used in analysing the data and that more emphasis should be given to ensuring
the quality of the measures that are used.

As far as an analysis of data is concerned, two issues need attention. Since
models of educational effectiveness refer to factors operating at different levels,
it is important to use multilevel modelling techniques that are able to identify
the variables at the student, teacher, school, and system levels that are associated
with student outcomes of interest. However, as noted above, an issue that has
to be taken into account is that some variables may not be linearly related with
student achievement. In the case of education, we have already considered the
likely existence of inverted-U curvilinear relations since these reveal that there
is an optimal point for the impact of a specific factor. After the optimal point,
a flattened or negative relation with achievement can exist, and thereby the
identification of the optimal point has important implications for improving
educational practice. Therefore, in analyses where researchers search for inverted-
U relations, the effect of both the various explanatory variables (Xi) and the
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effect of the second power of these variables (that is, Xi
2 values) upon student

achieve ment have to be identified. This approach may allow us to identify the
optimal value of this predictor factor (that is, the values of X for which Y has
a maximum value). Of course, other forms of nonlinear relations might also
exist. In cases where more than one optimal point can be identified, a question
can be raised about the efficiency of application of a certain factor after the first
optimal point is reached.

The second issue needing further attention is the issue of measurement errors
of variables, because these act as significant obstacles in establishing the existence
of possible nonlinear relations. In turn, this implies that researchers should give
more emphasis to measurement issues in order to increase the quality of the
data collected. Because the investigation of nonlinear relations is based on
searching to see whether the second (or even higher) power of a factor is able
to explain any additional variation in student achievement, it is important to
reduce measurement error as this is magnified in power calculations. In this case,
instead of dealing with the measurement error of a factor, you have to deal with
this error raised to the relevant power. As a consequence, it is much more difficult
to identify statistically significant relations. By giving more emphasis to measure -
ment issues, both the quality of the data collected and their statistical power
(that is, reducing the type II error) would be increased. Thus, when a particular
study fails to evidence nonlinear relations, this does not necessarily imply that
the relationships are truly linear because the finding may instead simply be an
artefact of the relatively high measurement error of the particular effectiveness
factor in question.

Finally, a failure to demonstrate nonlinear relations also may be attributed to
the difficulties of establishing enough variation in the functioning of some factors,
especially since almost all the effectiveness studies have been conducted in a
single country. Primarily, there are two alternative approaches in the search for
nonlinear relations. First, experimental studies can be conducted to create enough
variance in the functioning of each factor before then searching for optimal values.
However, research on the impact of changes in class sizes reveals that there may
be practical and ethical difficulties in attempts that concern the manipulation 
of school or classroom conditions. Thus attention should be given to the
ecological validity of experimental studies as well as to the ethical issues associated
with the experimentation (Miller 1984; Robson 1993). On the other hand,
comparative studies can be conducted that allow the validity of EER models to
be tested, especially when searching for the possible existence of nonlinear
relations. For example, international longitudinal studies are more likely to tap
the full range of variation in school and classroom quality measures and therefore
also variation in potential school and classroom effects. Thus, these studies could
help us identify nonlinear relations since within national studies the lack of a
significant effect might be due to difficulties in identifying enough variation in
either the student outcomes or, more likely, in the explanatory variables studied.
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Searching for differential effects of factors on
different groups of students

An important aspect of the unidimensionality of the teacher and school effect
concepts is whether general effectiveness should be separated from the notion
of differential effectiveness (Sammons 1996). During the first three phases of
EER, studies investigating teacher and school effectiveness were mainly based
on the assumption that the effectiveness of schools or teachers was measured by
their effectiveness for the average student (that is, the average with respect to
aptitude, socio-economic status, and so on) and other predictors (Campbell et
al. 2003). Despite the fact that a large number of effectiveness studies had been
conducted in many countries, very little attention had been paid to the extent
to which teachers and schools perform consistently across differing schools,
subjects and outcomes (Bryk and Raudenbush 1992; Campbell et al. 2004;
Kyriakides 2004; Sammons et al. 1993; Sammons et al. 1997). Moreover,
although evidence concerning differential effectiveness that is related to pupil
gender and to ethnic differences shows little overall consensus (Nuttall et al.
1989), there is even less consistency concerning differential school effectiveness
for groups of pupils and for different levels of prior attainment (Sammons et al.
1993). As a result, the issue of differential school effectiveness is clearly of
importance, and this can be seen in three areas.

First, research into differential educational effectiveness may provide a new
perspective on educational equality and the critics could be answered who argue
that EER has not given consideration to equity and justice (Kyriakides 2007).
Fielding (1997: 141) acknowledged the early work of EER as ‘a necessary
corrective to an overly pessimistic, even deterministic, view of the influence of
social and political factors on the efficacy of schools’. By contrast, current findings
concerning differential school effects have emerged from studies conducted in
the United States and suggest that schools matter most for the underprivileged
and/or initially low-achieving students (Scheerens and Bosker 1997). This implies
that school choice is a critical issue for pupils from disadvantaged backgrounds
and policymakers should provide relevant information to parents in this group
because they are likely not to take this issue into account as much as parents of
privileged students. This also points to the importance of improving schools that
are at the low end of the effectiveness spectrum, especially if they serve higher
numbers of disadvantaged students (Sammons 2008).

Second, research into differential educational effectiveness may raise issues
regarding the development and implementation of policy on educational equality.
If schools differ significantly in terms of their effectiveness for particular groups
of pupils, or in promoting different outcomes, issues concerning which school
effectiveness factors are associated with promoting the progress of specific groups
of pupils should be examined. The identification of these factors may be useful
for policymakers in order to attempt to design and implement policies on equal
opportunities. An investigation into differential school effectiveness might also
help the evaluation of national and school policy on equality of opportunities
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in education. For example, research on different teaching approaches has
suggested that low SES and low-ability students may benefit from more direct
and traditional strategies rather than from more recent constructivist approaches
(van der Werf 2006).

Third, findings concerning factors associated with school effectiveness that
promote the progress of specific groups of pupils may have significant implications
for theory-building in EER, especially since a distinction between generic and
differential factors should be made. However, the concept of differential teacher
and school effectiveness ought not to be polarized against a generic concept.
Rather, teacher effectiveness should be incorporated as a refinement of the effec -
tiveness of schools. In this context, the ‘dynamic model’ (Creemers and Kyriakides
2008) is based on the assumption that one of the dimensions used to define
factors of effectiveness is that of differentiation. Looking at only a frequency
dimension (for example, the quantity at which an activity associated with
effectiveness is present in a system/school/classroom) does not help us identify
the functioning of a factor that facilitates student achievement. By contrast, it
is considered important to see whether different groups of teachers, schools and
systems respond to each other’s learning needs. This is because an adaptation
to the specific needs of each subject or group is more likely to increase the
successful implementation of a factor associated with effectiveness and thereby
ultimately maximize its effect on student learning outcomes.

Two methodological issues arise from investigating differential effective-
ness. First, EER has focused on identifying differential effects for specific groups
of students through a single variable – for example, differential effectiveness in
relation to social class or in relation to gender. However, even in the few studies
where these two factors are evaluated simultaneously, interactions between these
are rarely made explicit (Mortimore et al. 1988; Sammons et al. 1993). Thus,
one way of raising the importance of the systematic investigation of differential
effectiveness is by looking at interaction effects between different groups of
students. This implies that using existing static dualisms such as girl/boy or
black/white as categories of analysis may mask other interrelating categories such
as socio-economic group (Weiner 1995). Instead, this new perspective suggests
that it might be fruitful to investigate differential effectiveness in relation to
different groups of students who are defined not by a single variable but through
interactions between those background variables that are associated with achieve -
ment. In turn, this then obliges larger sample sizes, as these would be needed
in such complex interactive models.

Second, beyond looking at the existence of differential teacher and school
effectiveness in relation to different groups of students, it is also important to
search for interactions among these and student characteristics. This is an
approach adopted by Campbell et al. (2004), who investigated differential
effectiveness in relation to such student characteristics (that is, personality type
and thinking styles). In order to examine whether teachers were differentially
effective in relation to the personal characteristics of their students, random
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regression slopes at level two (teacher) were specified for each type of personality
and each thinking style that was associated with student progress. For both
mathematics and Greek language ability, a significant random slope of ‘openness
to experience’ at level two was found (that is, mathematics: X 2 = 7.6; degrees
of freedom, df = 2; p < 0.001; and Greek language: X 2 = 5.9; df = 2; p < 0.001)
whereas for the achievement of affective aims, the significant random slope was
found for conscientiousness at level two (X 2 = 6.3; df = 2; p < 0.001). Further
to the point, Snijders and Bosker (1999: 74) argued that ‘if a researcher finds
a significant random slope variance she may be led to think of level-two variables
that could explain the random slope’ and that therefore it is not contradictory
to look for a specific cross-level interaction even if no significant random slope
has been found. It was upon this basis that Campbell et al. (2004) examined
cross-level interactions between variables associated with the quality of teaching,
personality type and thinking style. For mathematics, it was found that the cross-
level interaction between the student’s possession of an executive thinking style
and the ability of a teacher to provide practice and application opportunities was
significantly related. Specifically, the effect of the executive style on mathematics
achievement gain was higher when teachers provided more practical and
application opportunities to their students. A further statistically significant cross-
level interaction was also found in the analysis of teaching Greek language, and
this featured a liberal teaching style and the ability of a teacher to provide
information. In this case, the effect of the liberal style of teaching on student
achievement gains in the Greek language was found to be higher when the
teachers spent less time providing information. This study seems to reveal the
importance of searching not only for differential effects but also for interaction
effects between teacher (or school) level factors and student factors. The results
also justify the treatment of differentiation as a dimension for measuring the
functioning of factors that have been found to have a statistically significant
interaction with background factors in relation to outcomes.

The contribution of research methodology to
measuring the long-term effects of teachers
and schools

During the first three phases of EER, little attention was given to the question
of the continuity of school and teacher effects that were measured at different
stages of a student’s school career (Bressoux and Bianco 2004; Goldstein and
Sammons 1997; Hill and Rowe 1998). Moreover, the results of studies on the
long-term effects of teachers and/or schools that have been conducted in different
countries (Bressoux and Bianco 2004; Goldstein and Sammons 1997; Mendro
et al. 1998; Tymms et al. 2000) revealed that there was a considerable amount
of inconsistency concerning their existence and magnitude. Specifically, some
authors argued that an experience of a highly effective (or, by contrast, a highly
ineffective) teacher or school can have a critical effect because both factors are
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thought to affect one’s entire schooling and even subsequent work/careers. By
contrast, other authors have found only moderate effects, which tend to dissipate
over time, or have even concluded that long-term effects do not exist at all and
that the effect of a particular teacher or school is quickly cancelled out by the
effects of those subsequent. Yet other researchers have also argued that rather
than one teacher, a succession of poor teachers may cause a major longer term
impact on a student’s growth trajectory (Tymms 1995).

During the current phase of EER, the issue of the long-term effect of teachers
and schools has become more important due to the emphasis given to exploring
the dynamic perspective of educational effectiveness (Creemers and Kyriakides
2008). This has suggested that changes in the effectiveness of schools are likely
to be observed and thereby more attention should be given to the long- rather
than short-term effects of schools. Moreover, in the current phase of EER,
carefully designed longitudinal studies that last for more than two years are needed
not only for understanding the process of effectiveness but also for measuring
the long-term effects associated with schools. Further, it has also been argued
that the inconsistent results of previous studies investigating such effects can be
attributed to the fact that most were incapable of taking later occurring effects
into account (Kyriakides and Creemers 2008a). For example, one of the main
criticisms of studies on long-term teacher effects are their failure to take into
account the fact that teachers follow the individual whose long-term impact is
being evaluated and, as such, effects may be carried over from the teachers the
student has had in the meantime.

In studying the potential long-term effects of primary schools in particular,
it is insufficient to show that there is a relationship between the primary school
that has been attended and the achievement level at the end of high school
because primary- and secondary-school effects may be correlated (positively or
negatively). Students who attend effective primary schools may be more likely
to attend effective secondary schools (that is, there is a positive correlation
between the primary- and the secondary-school effects), and a study investigating
the short-term effect of secondary schools may thus overestimate the effect of
school on student achievement. On the other hand, if there is a negative
correlation between primary- and secondary-school effects, then a study
investigating the long-term effect of primary schools may underestimate the effect
of school on student achievement. A study that demonstrates this point was
conducted by Goldstein and Sammons (1997). ‘Secondary school attended’ was
included in a multilevel random crossed model where it was found that primary
school had an impact on secondary-school GCSE scores at age 16 and that the
primary-school effect on GCSE scores was greater than the secondary-school
effect. It was therefore argued that there is a deficiency in studies that assess the
added value of (secondary) schools after controlling for the students’ initial level
but not for their past school attendance.

While Goldstein and Sammons’ study can be seen as a criticism of studies
investigating immediate school effects that do not take past schools into account,
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the reverse criticism can be directed at studies that look at long-term teacher
and school effects using models that include past teachers and schools but not
interim teachers. In a longitudinal study that followed students for four years
(Kyriakides and Creemers 2008a), all of the teachers a student had during the
period under consideration were seen to have an impact on achievement at the
end of the study. By analysing data without taking into account the effects of
all the teachers that a student has, the long-term effects of teachers and schools
can be underestimated and their short-term effects overestimated. In particular
however, two methodological issues need attention when measuring the long-
term effect of teachers and schools.

First, longitudinal studies that last for at least three years should be conducted
and data on student achievement and on all the teachers that students have
during this period should be collected. In regard to designing longitudinal
studies, other issues should also be considered and an extensive analysis of this
type of research design is given in Chapter 5.

Second, modelling the long-term effect of schools and teachers requires a
combination of growth curve (Goldstein 1979, 1986; Maas and Snijders 2003;
Singer and Willett 2003) and cross-classified multilevel models (Goldstein 2003;
Meyers and Beretvas 2006; Rasbash and Goldstein 1994; Raudenbush 1993).
The cross-classified structure takes account of the fact that an individual can
belong to different hierarchical groups. Specifically, not all students from one
class at a certain school year move into the same class in the next grade, and
conversely not all students in a given class in a certain year came from the same
class in the previous. As far as the use of growth modelling is concerned, the
time of measuring student achievement (measurement occasion) constitutes level
one with students constituting level two. Statistically, the level one model is a
set of separate linear regressions, one for each student in the sample. Through
these equations, student achievement scores are regressed on their grade levels.
Therefore, the resultant statistical model is rather complex; it contains four
hierarchical levels (measurement occasion, students, teachers and schools) with
the third level (teachers) having a random crossed structure (see Chapter 11).

The contribution of research methodology to
defining effectiveness through different criteria

During the second and third phases of EER, studies on educational effectiveness
were mainly focused on attainment in language or mathematics, and this was
seen as one of the most significant weaknesses of EER. Although studies
investigating the affective outcomes of schooling (Knuver and Brandsma 1993;
Kyriakides 2005; Mortimore et al. 1988; Opdenakker and Van Damme 2006)
and in subjects other than mathematics and language (Kyriakides and Tsangaridou
2008) have been conducted during the last two decades, researchers have not
yet been able to monitor student progress across the full range of the school
curriculum. Moreover, they have not examined educational effectiveness in

28 The art of Educational Effectiveness Research



relation to the newer goals of education, such as the development of meta-
cognitive skills (Campbell et al. 2003). Thus, EER has been accused of an over-
emphasis on the cognitive domain and a restricted set of outcomes by focusing
too heavily on basic knowledge and skills. As a consequence, opponents of EER
have criticized it for having too narrow a scope by reducing school learning to
discrete, assessable and comparable fragments of academic knowledge (Slee and
Weiner 1998: 2). Such arguments can be countered by referring to studies that
have used multiple measures of schooling outcomes (Bosker 1990; Knuver and
Brandsma 1993; Kyriakides 2005; Mortimore et al. 1988; Opdenakker and Van
Damme 2000; Sammons et al. 2008). However, this argument also reveals the
important contribution that advances in research methodology can make to EER
since one of the main reasons for not measuring effectiveness in relation to
educational outcomes such as affective, psychomotor, social, and new-learning
outcomes has been the difficulty of developing appropriate instruments.

Nevertheless, it has become evident from recent studies (such as those just
mentioned) that it is possible to measure a broad range of outcomes in a valid
and reliable way using conventional methods of assessment. A typical example
is the Torrance Tests of Creativity Thinking (TTCT), which has been translated
into more than 35 languages and has become highly recommended in the
educational field for measuring creativity (Clapham 1998; Kim 2006) and
designing intervention programmes (Garaigordobil 2006). This has demonstrated
the need to develop psychometrically appropriate tests that measure a broad
range of educational outcomes by making use of advances in measurement
theory, and these are discussed in the next section. In doing so, it is important
to consider practicality and especially the process of administering the tests. For
example, Kyriakides and Tsangaridou (2008) designed a study measuring school
effectiveness in relation to Physical Education and developed a performance test.
However, administering this in a large number of schools was very costly in
terms of time taken from schools and the added research time of administering
the test to pairs of students. Another issue of practicality is that such studies
cannot be conducted unless sufficient funding is available. Although policymakers
in different countries may claim the need for a broad curriculum, this will not
broaden the scope of EER unless they are also concerned with measuring
educational effectiveness across the curriculum and not just in the core subjects.
Nevertheless, using different criteria to measure effectiveness enables the
development of theory and research in EER by answering the following issues.

First, we can examine the extent to which effectiveness factors are generic in
nature, meaning that they are able to explain variations between different
outcomes of schooling. By such illustration one can show the robustness of the
theory behind the models of EER that refer to these factors, for example, by
illustrating that the generalizability of the factors concerned with teacher
behaviour in the classroom (such as time management or structuring) and the
theory behind this model explain variation in achievement in various subjects 
of the school curriculum. At the same time, results showing that specific factors
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have differential effects raise new questions concerning the reasons for which
these are able to explain variation in one outcome but not in another (Kyriakides
2007). In order to deal with such questions, EER can benefit from the use of
advanced quantitative research methods such as the use of multivariate multilevel
modelling techniques, which are discussed in Chapter 11.

Second, we can find out whether teachers and/or schools are equally effective
in different areas. Such studies may help to test the reliability of teacher and
school effects and aid in classifying subjects into different clusters according to
their effectiveness for different outcomes. Thus, not only could specific feedback
be given to them, but researchers would then also better understand the concept
of consistency, which has been included in theoretical models (Creemers 1994)
but has yet to be sufficiently evidenced (Driesen and Sleegers 2000). This issue
has significant implications for the development of methodology, especially since
the earlier use of cluster analysis was not helpful when searching for consistency
in the behaviour of teachers and/or schools and the links between them and
outcomes. This can be attributed to the serious methodological limitations of
cluster analysis and especially its difficulties in demonstrating that one specific
cluster solution is more appropriate than any other (Marcoulides and Drezner
1999; Romesburg 1984). Instead, the use of Generalizability Theory or
Confirmatory Factor Analysis (CFA) as part of wider SEM approaches might be
more useful. More information on how researchers can employ Generalizability
Theory is provided in Chapter 10.

Third, finding ways to relate different outcomes is important since the relation
between cognition and other domains, such as the affective and meta-cognitive
outcomes of schooling, is not clear (Brandsma and Knuver 1993; Kyriakides
2005; Opdenakker and Van Damme 2000). By using different criteria of effec-
tiveness, one could find out whether schools that give emphasis to the achieve-
ment of cognitive outcomes also manage to improve outcomes in other areas.
At the moment, there have been studies that have shown that schools that are
effective in promoting cognitive outcomes tend also to be effective in affective
outcomes because they help students develop positive attitudes toward schooling
(Knuver and Brandsma 1993; Kyriakides 2005). It is also important to note that
there has been no study to date that has suggested a negative relationship
between promoting academic effectiveness and social or affective outcomes.
Moreover, using advanced quantitative methods such as SEM can help determine
the extent to which achievement in other domains, such as motivation and well-
being, is influenced by achievement in cognitive domains and allows reciprocal
relationships to be tested. In doing so though, we obviously do not suggest that
education should be restricted to cognitive objectives, since only a partial
relationship between achievement of cognitive and non-cognitive domains may
emerge. However, such results may indicate how achievement in cognitive
outcomes can help us promote the non-cognitive aims of education. At the same
time, schools should act as institutions within societies and contribute not only
to the cognitive but also to the non-cognitive domains of learning. For example,
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schools are expected to provide a positive social and aesthetic environment in
which social behaviour and aesthetic attitude can be developed.

Fourth, so far we have referred to effectiveness in schools by looking at the
extent to which specific outcomes of schooling are achieved. However, it is also
possible to examine the effectiveness of a school by investigating how far each
school managed to reduce the variation between students. This is called an ‘equity
dimension’, whereas looking at the achievement of outcomes is treated as a
‘quality dimension’ (Creemers and Kyriakides 2008). The equity dimension
results in another set of criteria for measuring educational effectiveness, which
are not related to achievement of specific outcomes of schooling but are related
to different groups of students in relation to one another. The underlying idea
is that education can contribute to social justice and democracy by closing 
the gap between students regarding their background, especially their abilities 
and the socio-cultural status of their families. As a consequence, early school
effectiveness research and school improvement projects led to the idea of creating
effective schools for the urban poor (Edmonds 1979). In the 1980s, there was
quite a lot of criticism of this kind of school improvement and its research, 
which featured conspicuous sampling biases (Firestone and Herriot 1982; Good
and Brophy 1986, Purkey and Smith 1983; Ralph and Fennessey 1983; Rowan
et al. 1983). Based on knowledge about quality education, although effective
schools are able to promote the learning of all their students they may not
especially lift those disadvantaged (Kyriakides 2004). However, no systematic
research has yet been conducted looking at the relation between these two
dimensions (Creemers and Kyriakides 2010). Moreover, a study that found that
school effects are larger (positive or negative) for disadvantaged groups (Bryk
and Raudenbush 1992) indicated that the equity dimension also warranted
further investigation. This question raises significant implications for EER
methodology since it reveals the need to use multilevel modelling techniques
to measure both equity and the factors that may promote this. Moreover,
searching for consistency in the criteria that are related to the two dimensions
of measuring effectiveness is another issue that has implications for multilevel
modelling techniques given that, ideally, schools should be equally effective in
both dimensions.

The contribution of research methodology to
measuring outcomes and factors

A major methodological advance in EER is the creation of instruments that will
sensitively measure the functioning of school and classroom factors. This is an
advance because most current instruments provide data that mainly refer to how
frequently actions associated with a factor take place in classrooms/schools/
educational systems. Nevertheless, studies looking at other characteristics have
shown that there are factors associated with achievement when qualitative
characteristics are considered instead of the frequency dimension (Kyriakides and
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Creemers 2008b). This implies that theoretical models of EER should refer not
only to factors associated with achievement but also to other different measure-
ment dimensions. Moreover, researchers should develop instruments measuring
the functioning of factors that provide data about both qualitative and
quantitative characteristics. To do so, not only should the construct validity of
the instruments be examined but also the validity of the measurement framework,
and this should be done by making use of Classical Test Theory and/or the
Item Response Theory (IRT).

Another issue that needs further investigation is the argument that different
sources of data should be used in order to measure the functioning of effectiveness
factors in a valid and reliable way. To some extent, this argument is supported
by studies that have looked at factors associated with quality of teaching, since
both students and external observers have been found to produce reliable and
valid data (Kyriakides and Creemers 2008b; Marsh and Roche 1997; Stronge
1997). However, it is still not clear how these different sources of data can be
combined. In turn, this reveals a need for researchers in the area of EER to
make good use of both Generalizability Theory and IRT in order to improve
the quality of their data and to identify ways of combining different sources in
a meaningful way. The possibilities of using these two measurement theories are
discussed in Chapters 9 and 10, respectively.

Concluding comments

In this chapter, we discussed the possibilities of using advances in research
methodology to improve EER. Specifically, emphasis was given to issues
associated with: (a) modelling educational effectiveness, (b) investigating the
long-term effect of schools, (c) using different criteria to measure effectiveness
and (d) establishing appropriate instruments to measure outcomes and the
functioning of different process factors. It was argued that EER can benefit from
the advances made in the following areas of research methodology (which are
discussed in the second part of the book): conducting longitudinal studies 
(see Chapter 5), using IRT to measure outcomes and factors (Chapter 8), using
Generalizability Theory (Chapter 10), using multilevel modelling (Chapter 11)
and using Structural Equation Modelling (Chapter 12). Making use of the
knowledge base of EER together with the presented methodological orientations
might facilitate progress with respect to addressing the key questions of EER
and thereby establish, develop, and empirically test its theoretical frameworks.
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Theory and research
The problem of causality

Introduction

An ongoing question that arises from the current state of educational effectiveness
concerns the nature of the relationships between so-called ‘effectiveness factors’
and student learning outcomes. Although the intention of many studies may be
to show causal relations between such factors and student achievement, most
reveal only associations between very specific factors and student achievement,
the extent that certain factors can predict variation in student outcomes and,
in longitudinal studies, how such factors predict change over time. Because the
topic of causality is rarely addressed explicitly, in this chapter we discuss its
meaning by looking at different orientations within the research methodology
and examine the potential importance of searching for causality within EER.
Causality is seen as related to the need to establish appropriate theoretical models
of educational effectiveness and the use of them for improvement purposes.

To discuss the main methodological issues associated with the problem of
demonstrating causality, specific types of research designs, such as experimental
and cross-sectional studies, are explored in the second section of this chapter,
along with the current state in EER in relation to demonstrating causality and
the testing of the validity of theoretical models. By contrast, in the third section,
we argue that theories within education can play a significant role in helping to
demonstrate causality. Finally, we then argue that theory-driven evaluation studies
could help demonstrate causal relations. More information on using this approach
is also given in the next chapter because this is concerned with the relationships
between EER and matters of educational policy and practice.

Searching for causality to understand the
concept of educational effectiveness

To further clarify the claim that EER needs research designs that will enable the
identification of potential causal relations, it is important to define the terms
‘cause’ and ‘effect’. Locke (1975) argues that a cause is any construct that makes
any other variable change its functioning over time. For instance, in the case of
EER, cause can be attributed to a specific school factor that is shown to make
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schools more effective (that is, helping students improve their achievement in
relation to specific learning aims). At the same time an ‘effect’ is seen as a variable
that is influenced by another construct (typically an earlier construct within EER
theory). Returning to the above example, the improvement of student 
outcomes is deemed to be due to the functioning of the hypothetical school
factor. However, Shadish et al. (2002) claim that we very rarely know all of the
potential causes of our observed effects or, indeed, how they may relate to one
another. Moreover, Holland (1986) argues that a cause can never be determined
unequivocally, and it is likely that some effects represent the result of combi-
nations of factors or interactions between them. For EER, this implies a need
to try to identify the probability that particular effects will occur. Estimating the
likelihood that an effect will occur gives the opportunity for researchers to explore
why certain effects seem to occur in some situations but not in others. This also
fits well with the kind of statistical approaches used in EER models that typically
identify the proportion of variance in outcomes that can be statistically explained
or accounted for by different combinations of predictors. This is an important
issue that needs to be considered by researchers within EER for whom the
ultimate aim is to improve practice through modelling variations in effectiveness
over time and the factors that predict such variation in student outcomes
(Creemers and Kyriakides 2006).

Further to the issues of causality and statistical modelling, Hedges (2007)
points out that it is helpful to distinguish between the inference model that is
used to specify the relationship between a hypothesized causal factor and its
predicted effect and the statistical procedures that are used to determine the
strength of this relationship. Following on from this, the first issue that researchers
should thus attempt to answer is whether the focus of their study concerns
identifying the effect of a cause or the cause of an effect. For example, if we
wish to know whether the use of certain teaching approaches that arise from
the constructivist approach to learning (Schoenfeld 1998) are more effective in
increasing the mathematics achievement of year-six students compared to more
traditional alternatives (often termed ‘direct teaching’ approaches; Joyce et al.
2000), then an experiment can be designed in which the effects of each teaching
approach are compared by using some appropriate measures of student learning.
If children who are exposed to one teaching approach score higher (on average)
in the mathematics assessment than do those exposed to the other and if 
the students in the two groups are equivalent in all respects other than their
assignment to groups adopting each teaching approach (as can often be achieved
by randomization), the researcher can conclude that the higher mathematics
scores are likely to be the result of the use of one teaching approach rather than
the other and therefore that this teaching approach is generally more effective.
This argument implies that when correctly implemented, the randomized
controlled experiment is a powerful design for detecting the treatment effects
of interventions. A random assignment of participants to treatment conditions
assures that treatment group assignment is independent of the pre-treatment
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characteristics of group members. Therefore, differences between the groups can
be attributed to treatment effects rather than to the pre-treatment characteristics.
It is, however, also important to acknowledge that randomized experiments
indicate only whether there are treatment effects and the magnitude of those
effects; they do not help us understand the underlying mechanisms (that is, why
treatments differ in their impacts) that are contributing to such effects. In turn,
this necessitates a role for theory. For example, when there is a strong reason
to believe that one treatment may be more effective than another, an experimental
approach is warranted for detecting such likely treatment effects (for example,
as in research on the impact of reductions in class size where it is hypothesized
that student attainment should be higher in smaller classes). That said, although
randomized controlled experiments are designed to detect average differences
in the effects of different treatments on outcomes of interest, researchers need
to recognize that there are a series of important and necessary steps that precede
the design of an experiment, and these are discussed in the second section of
this chapter. It should also be acknowledged that an experimental study is not
always the best approach for demonstrating causality. For example, if we already
have valid evidence in favour of one treatment, it would be unethical to administer
the old treatment to a group of students simply because we want to measure
the size of the effect of this treatment. Thus, methodological issues associated
with longitudinal and cross-sectional studies are also here discussed.

In this chapter, it is argued that the ultimate aim in any science is the
production of cumulative knowledge (see the more detailed discussion of this
topic in Chapter 13). Ultimately, this means the development of theories that
explain the phenomena that are of interest. One example are theories that identify
school factors associated with student achievement where it is hypothesized that
some schools are more effective than others for specific and identifiable reasons.
For EER, this implies that its role is to explain the phenomena of variations 
in school or teacher effectiveness by revealing causal relations between factors
related to school and classroom processes and subsequent variation in student
outcomes. Although this is a complex task, demonstrating causal relations can
contribute significantly to the theoretical development of EER since science
proceeds on the assumption that causal relations can eventually be uncovered
and understood and that events (that is, EER reaching effectiveness) are explicable
in terms of their antecedents (that is, what changes took place in the functioning
of factors). Moreover, searching for causality is based on the assumption that
there is regularity in the way a specific phenomenon can be observed (Cohen
et al. 2000), and this is linked to a post-positivist and realist epistemology that
uses quantitative measurement. In the case of EER, it is assumed that there are
generic and measurable factors that are likely to have a stable impact on
effectiveness and that operate similarly in different educational settings (Creemers
1994). However, it is also acknowledged that in some cases there may be
important interactions between effectiveness and contextual factors. In this book
it is therefore argued that the ultimate aim of EER is to develop valid theories
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to account for the processes underlying effectiveness in schools that are consistent
across different settings and that thereby give a basis for the prediction of
variations in this effectiveness (in terms of cause–effect relations). In the end,
such cause-and-effect relations should then be translated into means–ends
relations. In this way EER would contribute significantly to reforms of policy
and practice at both macro and micro levels and thereby help to improve the
quality of education (Creemers and Kyriakides 2006).

Different designs used to demonstrate
causality in EER: methodological advantages
and limitations

In this section, we refer to research methods that have been used to demonstrate
causal relations within EER and seek to identify their various strengths and
methodological limitations. In the first phase of EER (as described in Chapter
1) the main interest was to show that teachers and schools could make a difference
to students’ lives in terms of promoting better academic progress and the
development of positive attitudes towards schooling. In this phase, there was
little interest in describing or trying to explain why some teachers and schools
were more effective than others. Thus, searching for causality was not an
important feature in the agenda of this first phase.

Demonstrating causality through outlier studies

During the second phase of EER, special attention was given to conducting
outlier studies. By statistically identifying and comparing less effective with more
effective schools, significant differences in the specific characteristics of these two
groups were revealed. These characteristics were treated as factors associated with
the effectiveness status of schools, and gradually these became seen as the reasons
for the differences in measured effectiveness, which implied a causal relationship.
Such an approach is methodologically problematic for several reasons but
especially since differences between outlier schools in terms of effectiveness may
not necessarily be relevant to the origin of differences in student outcomes. This
is because the characteristics of these ‘effective’ schools may also be observed
among typical schools and schools that were less extreme in terms of their
effectiveness, and these would not have been studied when only outliers were
of interest. We can also raise questions concerning the internal validity of this
type of investigation as well as with the generalizability of the results to the
whole range of schools that were operating in the countries where such outlier
studies took place (because many earlier outlier studies focused on only particular
groups of schools that were often in disadvantaged communities). Finally, 
in some instances one could even claim that the direction of the hypothesized
causal relationships may actually have been the opposite of that hypothesized.
For instance, the fact that effective schools were found to have more orderly
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and safe climates than less effective schools (Edmonds 1979) may not necessarily
imply that the orderly and safe climate is the reason for greater effectiveness,
but instead that this type of school climate may be a consequence (or reflection)
of the fact that in this group of schools, students had higher achievement than
in the other. It is possible that students attending more effective schools have
good reasons to behave better (for example, they realize that their schools offer
them something), which means that the establishment of such a climate was not
the cause but rather an associated effect of the students attending a more effective
school. It is also possible that such factors are reciprocal, with better behaviour
first helping better attainment, which in turn promotes better behaviour and so
on in a virtuous upward spiral. Such alternative views can only be explored by
studies of the factors linked to changes in effectiveness status of schools over
time (see Chapter 5).

Demonstrating causality through cross-sectional
studies

During the second and, especially, the third phase of EER, emphasis was given
to conducting cross-sectional and longitudinal studies. Researchers within EER
made especial use of studies involving multi-sample comparisons since several
international comparative studies were being (or had been) conducted, such 
as Progress in International Reading Literacy Study (PIRLS) and TIMSS. It is
acknowledged that some of the most important theoretical and methodological
work in educational research has resulted from data analyses using large-scale
national data sets such as the Early Childhood Longitudinal Study (ECLS) and
the National Education Longitudinal Study (NELS) of 1988–2000. In addition,
the number of dissertations, articles in refereed journals, and other publications
that have been written from these national data sets is also extremely high. This
can be attributed to the fact that large-scale data sets that are drawn from
multistage probability samples allow for predictive analyses and thereby tentative
causal inference. With such data, researchers can therefore estimate the probable
effects of certain conditions for specific populations over time. In instances where
there are data elements about school or pedagogical practices, analytic techniques
can estimate the likelihood of what would happen if certain organizational,
institutional or instructional reforms were implemented on a larger scale. In some
cases, such data sets can also be used to approximate randomized controlled
experiments. For example, matched sampling can be used to assess the causal
effects of interventions when randomized experiments cannot be conducted
(Rubin 2006). In relation to EER, such a study might concern the effect of
teacher behaviour on student outcomes by using data from large-scale studies,
especially since experimental studies can only be conducted when teachers agree
to co-operate and are willing to change their behaviours in specific ways. Over
the past three decades in particular, statisticians (Rosenbaum 1986; Rubin 1974,
1978) and econometricians (Heckman 1976, 1979) have developed several
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methods of analysis for making causal inferences with observational data such
as that found in large-scale national data sets.

There are several advantages to using large-scale, nationally representative 
data sets to search for factors associated with differences in student achievement.
As one would expect, such studies are based on nationally representative samples
of students, their parents, schools and teachers. This contrasts sharply with
randomized controlled experiments that are designed to yield valid causal results
but often have limited generalizability in establishing the impact of specific 
inter ventions rather than which aspects of an intervention are most important.
By com parison, large-scale national educational studies are typically designed to
be generalizable to specific populations of students and allow changes in the
outcomes of interest (for example, in overall educational standards). This permits
large-scale data sets to be seen as rich sources of descriptive information on
students, teachers and schools.

Because they are based on large, nationally representative samples, large-scale
national data sets are also useful in studying the characteristics and achievement
of subgroups, such as minority and low-income students, groups that are often
targeted for educational interventions that aim to improve school effectiveness
(Kyriakides 2007). In addition, such data sets are often longitudinal, which makes
it possible to measure achievement gains at both the individual and group levels
over time (de Fraine et al. 2007). They can also be used to develop plausible
hypotheses regarding the likely causes of differences in student achievement
gains and can inform the design of subsequent randomized controlled trials 
for hypothesis-confirming purposes. For example, these data sets can be used to
identify promising interventions and to target subgroups that are thought to be
most likely to benefit. They may also suggest potential causal mechanisms that
may explain why the functioning of a school factor may have positive effects 
on student achievement, such as a school’s policy on parental involvement.
Moreover, when randomized controlled trials are not feasible (for example, for
measuring the absolute effect of schooling), large-scale, nationally representative
studies may provide the best source of data on which to base studies that seek
to explore the existence of possible causal relations using alternative approaches,
such as regression discontinuity (Kyriakides and Luyten 2009).

Despite the strengths of these studies, however, one can also identify some
serious methodological weaknesses in attempts by researchers to claim causality
by using cross-sectional data and searching for correlations between the
functioning of specific factors at different levels (for example, teacher, school,
country) and variation in student achievement outcomes (Gustafsson 2007;
Kyriakides and Charalambous 2005). The main problem with this approach 
is that large-scale observational data sets do not typically feature a random
assignment of individuals or schools to treatment and control groups. Therefore,
researchers must be aware of the tradeoffs that are involved in choosing
experimental versus non-experimental designs when both can be used to address
a particular research question and both are logistically and ethically feasible. The
most important weaknesses of the cross-sectional approach are outlined below.
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First, however, an issue that needs further attention is the measurement of
effectiveness based only on a measure of student outcomes without controlling
for differences in prior achievement. For example, the inclusion of aptitude
variables in International Association for the Evaluation of Educational Achieve -
ment (IEA) studies could lead to more coherent conclusions since the effect of
this variable in effectiveness studies that have collected data on various background
characteristics (for example, aptitude/prior attainment level, gender, SES) has
consistently revealed that the effect of aptitude/prior attainment is stronger than
the effect of student SES (Kyriakides 2006; Mortimore et al. 1988; Sammons
and Ko 2008; Sammons et al. 1993; Sammons et al. 1997). Moreover, studies
that do not take into account aptitude are not able to explain significant
proportions of the variance in later student achievement situated at the student
level, and so such models lack appropriate statistical control (or these are under-
or mis-specified). From this perspective, it can be argued that the inclusion of
variables such as prior attainment in future comparative and cross-sectional
studies should be taken into account. To this end, the use of value-added forms
of assessment may not only help us ‘correct’ simple evaluations of schools and
educational systems but may also help develop better models of educational
effectiveness (Fitz-Gibbon 1997; Goldstein 1997; Sammons 1996). However,
even if such measures are taken into account, there are still important problems
in arguing that the results of the usually employed multilevel modelling procedure
reveal a causal relation between the explanatory variables situated at different
levels and student outcome measures, which are treated as dependent variables.

A typical effectiveness study following a cross-sectional design usually measures
the achievement outcomes of students in a set of schools within a country.
Information is collected about specific factors situated at different levels, such
as student characteristics (for example, SES, gender), teacher characteristics 
(for example, teacher reported policy or behaviour in the classroom, teacher
experience/knowledge) and school characteristics (for example, school policy
on teaching, school learning environment). Using different kinds of statistical
analyses (such as regression analysis) these background and contextual factors
are treated as independent variables and their statistical influence on achievement
(ability to predict variation in achievement) is determined. However, it is possible
to confuse the direction of causality in cross-sectional data and so caution should
be exercised before attempting to make causal statements based on analyses of
such data. For example and illustrating the role of theory, when researchers have
correlated the time students spent on homework with achievement, some have
found a significant negative correlation, meaning that students who spend more
time doing their homework tend to obtain lower grades. However, it does not
seem reasonable to interpret the negative correlation to mean that the more
homework students are asked to do, the lower the level of achievement obtained.
A more reasonable explanation for the negative correlation would be that students
with lower levels of aptitude or achievement take more time to do their
homework, especially when the same amount and type of homework is given
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to all students of each classroom. Their attainment might actually be even lower
if they were not set any homework or chose not to do it. Moreover, other studies
have generally found a positive effect at the secondary level.

The problem of confusion over the direction of causality is well known in
virtually every social science. In econometrics, this difficulty in drawing causal
relations from cross-sectional data is called an ‘endogeneity’ problem, whereas
sociologists and psychologists refer to this difficulty as the problem of ‘reversed
causality’. Yet another term for it is ‘selection bias’, which means that the levels
of performance of the different groups in the sample may not have been
comparable before they received a treatment and this has then biased subsequent
results. A typical example of this problem is provided by Lazear (2001) who has
developed a model to account for the effects of variation in class size. This model
shows that there is a selection bias in studies searching for the effect of class
size since it is demonstrated that larger-sized classes tend to be populated by
higher performing students (because in many schools lower ability students may
be taught in smaller groups as a form of support). However, irrespective of the
term that is used to describe this problem, one should be aware that this difficulty
is very likely to occur in cross-sectional studies, especially when a study is
conducted at the individual/student level. One way to minimize this problem
is to control statistically for the differences between students that existed before
a treatment was applied. This approach requires the measurement of pre-existing
differences, but in cross-sectional studies, such measures are usually not taken
into account. However, during the third and fourth phases of EER, longitudinal
designs have come to be used more frequently and thereby data has become
available on prior achievement and/or other aptitude variable(s), as well as on
these measures after treatment (that is, at the end of a school year or a specific
period of schooling). This implies that it is now possible for researchers in the
area of educational effectiveness to use such designs and so draw stronger
arguments about likely cause-and-effect relationships.

Before we move to the discussion of other methodological problems that
tend to arise from using cross-sectional studies to search for causal relations, it
should also be acknowledged that national data sets are now available and
researchers within EER should make use of the different procedures that have
been developed in order to adjust for selection bias. One of the earliest and best
known of these techniques was developed by Heckman (1979). In a two-step
procedure, a multiple regression model is first estimated for an outcome of interest
(for example, mathematics achievement) before a selection model is then
estimated that compares those who participated in a programme against those
who did not. If differences between participants and non-participants are detected,
then adjustments are made to the first model to correct for these. However,
there are limitations to the procedures used to correct for selection bias. These
mainly arise from the fact that the selection model used to detect and correct
for selection differences may be mis-specified, such as when important variables
are missing (Stolzenberg and Relles 1997; Winship and Mare 1992). Another
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method that can be used to try to correct for selection bias is adjusting outcomes
for relevant observed variables that are correlated with both the outcome and
the independent variables of interest (termed ‘observable selection bias’; Barnow 
et al. 1980). Nonetheless, it should still be acknowledged that unobserved
characteristics may continue to bias estimates of programme effects even when
this method is employed.

From the notion of observable selection bias comes the observation that a
potential source of erroneous causal inference from cross-sectional data is the
problem of omitted variables. For example, when an independent variable is
related to a dependent variable in a statistical model and the estimated relation
is interpreted in causal terms, it is assumed that there are no other independent
variables associated with the independent variable being studied (no multi-
colinearity). However, if such omitted variables do exist, they will lead to bias
in the estimated causal relations if they are correlated with the regression residual
associated with the dependent variable, possibly leading researchers to ascribe
causality to variables other than the ones that are really involved. Theoretically,
one approach to solve this problem would be to measure and analyse all potential
variables. However, it is practically impossible to include all relevant variables
even if a strong theory is available to help researchers select all of these. Therefore,
the problem of omitting variables may lead researchers to consider some
independent variables as causes whereas, in practice, the independent variables
that are really involved in a cause-and-effect relationship may have been ignored
because they were either not measured or not included in a statistical model.

Further to the point of omitted variables, social scientists have developed
several methods to adjust for observed and/or omitted variables when making
comparisons across groups using observational data. The following three methods
are mainly used: (a) fixed-effects models (see Chapter 5), (b) propensity score
matching and (c) regression discontinuity designs (see Chapter 11). Winship
and Morgan (1999) provide a useful overview of these methods and advocate
that researchers within EER should consider their use to explore potential cause-
and-effect relations. While propensity score matching is presented in this chapter,
the other two methods are discussed in Chapters 5 and 11 respectively. Of note
here, however, is that some studies within EER that have used the regression
discontinuity design have indicated the possibility of measuring the effect of
schooling in specific contexts, such as in countries where the entry to primary
school is based on date of birth (Kyriakides and Luyten 2009).

Concerning propensity score matching however, this is a technique aimed at
estimating the predicted probability that individuals with certain characteristics
will be assigned to a treatment group when assignment is non-random (Rubin
1997). The advantage of using propensity score matching is that it aggregates
a number of characteristics that individually would be very difficult to match
among those in the treatment and the control groups. For example, if researchers
are interested in measuring the impact of remedial teaching on student
achievement, one could assume that students from disadvantaged families are
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much more likely to attend this type of provision in schools. On the other hand,
students of upper middle-class families might have a relatively smaller probability
of attending such provision because of the link between SES and achievement
level. To approach a random assignment trial, a comparison should be made
between individuals who have a reasonable probability of being chosen to be in
either the treatment (for example, remedial teaching programme) or the control
group. Students with similar propensities to be in the treatment group (whether
they are actually in the treatment group or not) can then be matched on the
basis of their propensity scores. As a consequence, the difference in subsequent
achievement scores would then be closer to the difference we would expect in
a random assignment of these students to the two groups.

There are a number of ways propensity scores can be used to match students
in treatment and control groups. The most common way is to sort students
from each group into ‘bins’ or strata based on the distribution of propensity
scores. Within each bin, the characteristics of students in the two treatment
conditions are similar on a weighted composite of observed covariates. If the
average characteristics of students within a bin are not equal, a more refined
model is developed, using additional bins or strata until a balance in the
characteristics of students in each group is achieved. In some cases, there may
be ‘bins’ in which there is no overlap between the treatment and control groups,
indicating that students have almost no probability of either obtaining or missing
out on a treatment. Because these students have no matching counterparts in
the other group, they are then excluded from any further analysis. This technique
approximates randomized assignment since students within each of the remaining
bins or strata have a roughly equal probability (based on their aggregate
characteristics) of being selected into either the treatment or control condition.

It can be argued that propensity scores address an important issue in empirical
research, namely providing estimates of effects for certain groups when
randomization is not possible (for example, remedial teaching) and where sample
elements have self-selected themselves into treatment or control conditions (for
example, when teachers decide by themselves which in-service training (INSET)
programmes they will attend). However, it is important to note that propensity
score matching adjusts only for observed characteristics. Because a large number
of background characteristics are used in calculating propensity scores, the
probability that a relevant variable has been omitted from analysis, although
reduced, is not eliminated. Nevertheless, it is also possible to test the sensitivity
of subsequent results to hypothesized omitted variables (Rosenbaum 1986,
2002). Because an aggregate of characteristics is used to compute propensity
scores and analytic samples are restricted to individuals (or schools) that can be
matched across treatment conditions, propensity scores are more effective at
approximating randomized assignment when large, nationally representative data
sets are used. In such cases, the samples on which these data sets are based are
sufficiently large to allow for the analyses of a sub-sample and contain compre -
hensive information on the background characteristics of students and schools.
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If selection into the analysis is unbiased (for example, exclusions due to missing
data do not result in differences between the analysis sample and the larger
sample), subsequent results may also be generalizable back to the population of
students or schools. However, it should be acknowledged that by following this
approach, the size of the two groups involved in any study is likely to be
decreased, and this might cause major problems for demonstrating causality due
to the fact that statistical power has been significantly reduced.

Finally, it is important to make clear to the reader that from our discussion
of the strengths and weaknesses of using cross-sectional data to search for causal
relations, one can easily see that there are important limits to survey analysis
even when adjustments for selection bias and multiple levels of analysis are used.
Since populations are heterogeneous, estimates of the relationship between an
effectiveness factor and student outcomes (that have been corrected for selection
bias) may not be applicable to groups that have a low probability of falling into
either the treatment or control group. However, it should also be acknowledged
that in the last few years, analyses of large-scale data sets using the methods
described above have produced several important findings concerning educational
effectiveness, some of which have implications for causal inference and for the
design of randomized experiments. For example, Hong and Raudenbush (2005)
draw data from the Early Childhood Longitudinal Study (ECLS) and by using
propensity score matching to construct treatment groups, they evaluated the
effect of kindergarten policy on children’s cognitive growth in mathematics and
reading. Similarly, longitudinal research from the Effective Provision of Pre-
School, Primary, and Secondary Education (EPPSE) project in England has
demonstrated the impact of both duration and quality of pre-school on young
children’s cognitive and social behavioural development and on reducing the
likelihood of identifying subsequent special educational needs (SEN) (Anders 
et al. 2009; Sammons et al. 2008; Sammons et al. 2005; Taggart et al. 2006).

Demonstrating causality through experimental studies

The foregoing discussion about the advantages and limitations of cross-sectional
and longitudinal studies reveals the need to consider the possibility of carrying
out experimental studies in order to demonstrate causal relations between certain
factors of interest and changes in student achievement. However, it should be
acknowledged that, so far, only a few experimental studies within EER have
been conducted to identify cause-and-effect relations between school factors and
improvements in school effectiveness (Antoniou 2009; Demetriou 2009; Tymms
and Merrell 2009). This can be attributed to practical reasons, such as funding
and obtaining consent to allocate students randomly into experimental and
control groups but also to the initial interest of EER in describing practices that
are effective rather than trying to create effective practices based on theory. As
previously mentioned, when conducting experimental studies, attention should
be given to the ecological validity of the experiment as well as to associated
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ethical issues (Miller 1984; Robson 1993), while threats to internal validity should
also be taken into account. However, in this chapter, it is argued that further
careful use of well constructed experimental studies may yet provide strong
evidence for hypothesized cause-and-effect relations and contribute both to the
testing of theoretical models and to the establishment of stronger links between
EER and improvement practices.

Another issue we would like to raise in this chapter is the importance of using
group randomization to study the effects of teacher- and school-level factors 
on student achievement. Readers are reminded that interventions aimed at
changing teacher behaviour and/or school factors are designed to affect the
behaviour of groups of interrelated people rather than of disparate unconnected
individuals (in the case of teacher factors, the students in their classroom and
the teacher; in the case of school factors, the teachers and/or students in the
school). Therefore, it is generally not feasible to measure the effectiveness of
these interventions in an experiment by randomly assigning each student to each
of the groups. Instead, by randomizing at the level of groups (that is, teachers
or schools) researchers can still reap most of the methodological benefits afforded
by random assignment. Further, the use of group randomization to study the
effects of reform policies is now spreading across many fields in the social sciences.
Over the past decade, this approach has been used to evaluate various inter-
ventions in education, such as ‘whole-school’ reforms (Cook et al. 2000), as
well as community health promotion campaigns (Murray et al. 2000), school-
based drinking prevention programmes (Flay 2000) and community employment
initiatives (Bloom and Riccio 2005). The main reasons why a research team
might choose to study the impact of an intervention programme in a place-
based design using group randomization are mentioned below. It is argued that
this approach is useful in demonstrating causal relations between teacher and/or
school factors and changes in student achievement.

However, problems in implementing experiments can also present substantial
threats to their validity, and some of these, especially those faced in using
experimental approaches to evaluate reforms in education, are discussed in
Chapter 6. Readers are reminded that the ideal example of an experimental study
assumes that an innovative programme is implemented with fidelity, that students
do not move between treatment and control groups and that they remain in
their assigned groups for the duration of the study. This is because the statistical
solution to the fundamental problem of causality relies on an assumption of
independence between pre-treatment characteristics and treatment group
assignment. However, this independence is also very difficult to achieve in non-
randomized studies. As a result, statistical models are typically used to adjust for
potentially confounding variables (that is, characteristics of students, classrooms
or schools that predict treatment group assignment and also predict outcomes)
when outcomes for different groups are compared. However, as Raudenbush
points out, ‘No matter how many potential confounders [analysts] identify and
control, the burden of proof is always on the [analysts] to argue that no important
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confounders have been omitted’ (2005: 28). By contrast, because randomized
assignment to treatment groups takes into account observed and unobserved
characteristics, such control is not deemed necessary. This is why randomized
field trials are often considered as the ‘gold standard’ for making causal inferences.
Nevertheless, implementing experiments with randomized assignment can also
present problems for researchers, such as breakdowns in randomization, treatment
noncompliance, attrition and variation in fidelity of programme implementation.
To counter these, methodologists have developed a number of procedures,
although such solutions are not always adequate. Some of these problems are
discussed below, and the ways of addressing them in randomized field trials 
are presented.

Breakdowns in randomization

There is sometimes resistance to randomization, particularly when a promising
new treatment (for example, the use of technology in teaching) is being tested.
For example, parents may lobby to have their children included in a promising
new treatment programme. Such problems can be avoided by monitoring both
the randomization process and the actual treatment received by each participant
following randomization. Another strategy to minimize breakdowns in random-
ization is to isolate the units under study. For example, when different treat-
ments are given to different schools (high isolation of units), it is less likely that
breakdowns in randomization will occur than when different treatments are
given to different classrooms within the same school (low isolation of units).
However, when schools or other groups are assigned to treatment conditions,
randomization occurs at the group rather than at the individual level (that is,
group or cluster randomization). Therefore, the assumption that individual
responses are independent ceases to be valid because individuals within the same
group are more likely to provide similar responses than individuals in different
groups. At the same time, this problem can be dealt with by the use of multilevel
modelling techniques (see Chapter 11), which can simultaneously provide
estimates of causal effects at both the individual and group levels. In terms of
EER, this approach has been used in experimental studies aiming to identify the
impact of using the dynamic model of educational effectiveness to improve
teacher and school effectiveness (Antoniou 2009; Demetriou 2009).

Treatment noncompliance

Individuals who are randomly assigned to treatment and control conditions may
not actually receive treatment as some may simply fail to show up for the
particular programme to which they have been assigned. For example, randomly
assigning teachers to receive different teacher professional development courses
does not mean that they will attend these (Antoniou 2009). There are several
practical ways to encourage participation, however, such as providing incentives,
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removing obstacles (for example, providing the courses at convenient times) and
including only those individuals who are willing to participate. However, even
when such steps are taken, some of those selected for participation in a study
may still fail to participate.

Three statistical strategies have been used in cases where there is participant
noncompliance. In the first approach, known as the ‘intention-to-treat analysis’,
the mean responses of those assigned to the treatment condition (regardless of
whether they actually received treatment) are compared with the mean responses
of those assigned to the control condition. Assuming that the treatment has
positive effects, the mean for the treatment group will typically be found to be
lower than it would if all individuals assigned to the treatment condition had
actually received treatment. Therefore, this analysis usually yields conservative
estimates of treatment effects and this might be seen as its main limitation. The
second approach eliminates individuals assigned to the treatment condition 
who do not actually receive the treatment. However, unless it can be shown
that those who drop out of the treatment condition are a random sample of 
the participants in that condition, this analysis will yield a biased estimate of the
treatment effect. The third strategy focuses on estimating the intention–to-treat
effect for the subset of participants who are ‘true compliers’. True compliers are
those who will take the treatment or the control when assigned it. Noncompliers
are those who will not take what they are assigned, whether it is the treatment
or the control condition (Angrist et al. 1996; Little and Yau 1998). Noncompliers
are of three possible types: (a) never-takers (who never take treatment no matter
what condition they are assigned to); (b) always-takers (who always take treatment
no matter what condition they are assigned to); and (c) defiers (who always do
the opposite of what they are assigned). Because only the true compliers can be
observed both taking and not taking treatment, they are the only subgroup for
which we can learn about the effect of taking a treatment versus being in a
control group. An additional assumption of this strategy yields the ‘instrumental
variable estimate’ for the noncompliers, where there is no effect of the assignment
on what would be observed. That is, the ‘exclusion restriction’ says that if the
assignment to treat versus the control cannot affect which condition a participant
will take (that is, the noncompliers will do what they want regardless of the
condition to which they are assigned), it cannot affect the participants’ outcome.

Attrition

In many cases, individuals who are selected for study initially participate but
later drop out. It is not always possible to maintain contact with all participants,
and those who are contacted may refuse to continue their participation. As such,
researchers have developed strategies for estimating the effect of attrition on
outcomes of interest. Little and Rubin (2002) reviewed several techniques for
dealing with missing data, including data missing due to attrition. Three
categories of missing-data mechanisms were identified: missing completely at
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random (MCAR), missing at random (MAR) and missing not at random
(MNAR). Data are said to missing completely at random if the probability of
having missing data on an outcome variable Y is not dependent on Y or on any
of the variables included in analysis. If data are MCAR, estimates of treatment
outcomes are unbiased. Data are said to be missing at random if the likelihood
of having missing data is related to the observed values of other variables included
in the analysis. In this case, the missing data are unrelated to Y after controlling
for other variables. In cases where data are missing not at random, the probability
of having missing data is dependent on both observed and unobserved values
of the outcome Y. For example, attrition may depend on values that were
recorded after dropout. If only individuals with incomes below a certain level
drop out of the study, and data on income are available only for those who
remain in the study, then estimates of treatment effects will be biased. However,
it is important to note that in any given situation, the actual missing data
mechanism remains unknown. The researcher has to assess the plausibility of
each alternative assumption based on what he/she knows about the population
included and what they reveal about how the missing data were generated.

In cases of attrition from randomized experiments, researchers typically have
information on the pre-treatment characteristics of participants as well as their
treatment group assignments and can conduct analyses to determine whether
there are significant differences in initial measures between those who dropped
out of the study and those who remained. Significant differences between leavers
and stayers indicate that the characteristics of those who left differ from the
characteristics of those who remained, and this suggests that the study findings
may not be generalizable to the population of interest. Furthermore, when the
characteristics of participants who drop out of the treatment group differ from
the characteristics of those who drop out of the control group, the estimate of
the treatment effect may again be biased. In such cases, researchers are advised
cautiously to explore techniques for adjusting for potential bias (for example,
imputing missing values, modelling the effects of attrition on responses or
estimating maximum and minimum values to bracket the treatment effect).

Another issue in implementing a true experiment given significant attrition
is the issue of statistical power. In the context of experimentation, power refers
to the ability of a statistical test to detect a true treatment effect (Cohen 1988).
Existing reviews of the literature indicate that insufficient power for making
appropriate statistical judgments is a problem with studies across several fields
(Cuijpers 2003; Dignam 2003; Halpern et al. 2002; Rossi 1990; West et al.
2000). This is a serious problem for EER, given both the cost of conducting
randomized experiments and the failure of underpowered studies to yield
consistent answers. Fortunately, there are several methods for increasing statistical
power. Increasing original sample size is the most obvious, but practical considera-
tions such as cost, available resources and access to populations of interest (for
example, children with learning disabilities) may restrict this option for many
researchers. Instead, the following approaches may be more practical when
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increasing statistical power: (a) using more reliable measures, (b) minimizing
participant attrition, (c) increasing the fidelity of treatment implementation and
(d) measuring and adjusting for characteristics related to the outcome of interest.
Again in relation to EER, studies investigating the use of the dynamic model
have successfully made use of these approaches to evaluate the effects of
improvement interventions (Antoniou 2009; Demetriou 2009).

Finally, it is acknowledged that while experiments provide the best evidence
with respect to treatment effects, they may yield results that are local and
particular with issues for generalizability. Statistically, the only formal basis for
ensuring the generalization of causal effects is to sample randomly from a well-
defined population. Although formal probability sampling is viewed as the ideal
with respect to generalizing to populations and settings, it is also extremely
difficult to implement in practice (and in education especially) when partici-
pation in the experiment is voluntarily. Randomly selecting settings (for example,
schools), while possible, may be difficult to implement in practice due to the
cost of studying more than a few sites. Because of the practical difficulties of
imple menting random sampling, researchers have often relied on study replication
to generalize results from single studies to other outcomes, populations 
or settings (Raudenbush and Liu 2000). In this context, the next part of this
section refers to the importance of conducting meta-analysis of effectiveness
studies in order to demonstrate cause-and-effect relations.

Demonstrating causality through meta-analysis

One approach to demonstrating causality in EER is the use of quantitative
syntheses of effectiveness studies. Meta-analyses integrate the findings of studies
and reveal simpler patterns of relationships that underlie research literatures and,
as such, provide a basis for theory development and empirical testing. Moreover,
meta-analysis can help to correct for the distorting effects of sampling error,
measurement error and other artefacts that can produce the illusion of conflicting
findings (Hunter and Schmidt 2004). Furthermore, in the case of using meta-
analyses to search for causal relations between prospective factors and student
achievement, researchers are able to examine whether the prospective factor could
be considered generic or differential. The extent to which variables (such as the
country where each study was conducted or the age range of the students
involved in each study) explain variation in the effect sizes of prospective factors
helps to identify those factors that should be treated as differential and those
that are generic in nature.

However, there are also limitations in using meta-analyses to demonstrate
causal relations between factors and student achievement, and these are discussed
in Chapter 13. One of the most significant limitations is that the results of a
quantitative synthesis are strongly dependent on the characteristics of the available
studies. For example, if all studies are cross-sectional or correlational then it is
not possible to draw strong conclusions about the existence of causal relations.
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However, we do not support the idea that only studies using true experimental
approaches should be selected or given more emphasis than studies using other
designs, such as longitudinal or cross-sectional, as proposed by the ‘best evidence’
approach (Slavin 1986, 1987). This is because reliance on ‘perfect studies’ does
not provide a solution to researchers when they are confronted with the problem
of conflicting research findings. On the contrary, the characteristics of studies
used to conduct a meta-analysis (for example, research design employed, statistical
techniques employed) can be taken into account and attempts made to find out
the extent to which these characteristics can predict variation in the observed
effect sizes of interest. Where it can be shown that the particular research design
employed does not predict variation in the observed effect sizes, one can more
easily claim the existence of causal relations between these factors and student
achievement. Further information on the development of this research approach
is given in Chapter 13, especially since there have been recent methodological
advances in this area and some multilevel meta-analyses of effectiveness studies
using this approach have already been conducted (Creemers and Kyriakides
2008; Scheerens and Bosker 1997; Scheerens et al. 2005).

The role of theory in demonstrating causality

In the first section of this chapter, we showed that there has been a gradual change
in the focus of EER from trying to identify the characteristics associated with better
student outcomes, to a concern with making claims about factors that were seen
to be important in terms of inducing effectiveness, and then to studies that seek
to identify factors that can statistically explain variation in student outcomes. Due
to these changes in the agenda of EER, there has been a greater emphasis on the
development of theoretical models during the third and the fourth phases of
development of this field. These models do not refer to single factors and their
relation to student outcomes, but instead the newer models look at multiple factors
operating at different levels. The choice of these factors is determined by the
theoretical perspective under which educational effectiveness has been conceptual -
ized (see also Chapter 1). As a result of this theoretical development, a number
of important studies testing the validity of models of EER have been conducted.
Although these studies expected to demonstrate causal relations, (as implied in the
models) there have been methodological difficulties in doing so. Nonetheless, 
they have a significant advantage over those preceding in that they have been
guided by theory and they attempt to test the validity of these theories rather than
searching for rela tions that may exist for several reasons other than a hypothesized
causal relation between specific factors and student achievement. This has been
especially true for studies where researchers have tried to claim that causal rela-
tions were identified by collecting data through cross-sectional studies and 
using Structural Equation Modelling (SEM) procedures to analyse them (see
Chapter 12).
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The argument about conducting studies that are guided by theory in order
to demonstrate or reject causal relations brings attention to another issue. The
successful use of such studies depends on following strict procedures in the
analysis of data (in line with the confirmatory nature of this design) and with
difficulties that researchers may face in transforming theoretical concepts into
meaningful instruments measuring these. This argument suggests another reason
for developing appropriate instruments to measure the function of hypothesized
effectiveness factors, such as different dimensions of teacher behaviour or 
school climate (Kyriakides et al. 2009; Sammons and Ko 2008; Teddlie et al.
2006). As was mentioned in Chapter 2, advances in EER partly depend on the
appropriate use of measurement theories in designing effectiveness studies, details
of which are further presented in Chapters 9 and 10. These measurement theories
can help us develop more appropriate instruments to carry out studies driven
by theoretical models that are better placed to demonstrate causality and thereby
confirm or deny the validity of these models.

Concluding comments

In this chapter, the advantages and limitations of using different research designs
to demonstrate causal relations between factors that relate to specific features of
school or classroom processes and variation in student outcomes have been
discussed.

First, a reliance only on comparisons via outlier studies was criticized and
researchers were encouraged to make greater use of experimental designs
(especially group-randomization studies) and longitudinal investigations (see also
Chapter 5). Moreover, mixed-method research can investigate the difficulties of
demonstrating causal-effect relations in specific contexts. For example, rather
than noting that schools in low SES contexts do less well even when student
level intake factors are controlled, such studies may illuminate why and how low
SES context affects school and classroom processes and climate and thus affects
student outcomes (see Chapter 7).

Second, the limitations of cross-sectional studies and of studies involving multi-
sample comparisons – such as in international studies of educational achievement
– in demonstrating causality were discussed. Although the use of experimental
studies was recommended in this chapter, the practical difficulties in carrying 
out such studies were also acknowledged. Finally, in the third section of this
chapter, the potential of using theory (based on emerging EER models) in
demonstrations of causality was stressed. It was argued that special emphasis
should be given to the use of cross-sectional studies and/or studies involving 
multi-sample comparisons guided by theoretical developments within the field 
and making use of Structural Equation Modelling in analysing their data to
demonstrate causality. The latter can also be seen as a more practical way to search
for causality than conducting expensive, large-scale experimental and longitudinal
studies to demonstrate cause-and-effect relations. However, this approach can only
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be carried out under strict conditions and by operationalizing theoretical concepts
into instruments that will provide reliable and valid data. In this context, we argue
that researchers should not only make use of cross-sectional studies that are
guided by theories, but should also attempt to conduct theory-driven evaluation
studies. In the next chapter we show that such theory-driven evaluation studies
could also help us demonstrate causal relations. Moreover, detailed consideration
of how to use this approach in conducting evaluation studies is provided, as it also
concerned with the relation of EER to policy and practice.
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Theory-driven evaluation
studies
Establishing links between research,
policy and practice

Introduction

During the fourth phase of EER, it was acknowledged that the ultimate aims
of the field were not only the identification of associative and stronger cause-
and-effect relations and the development of plausible empirically supported
theories explaining the processes of educational effectiveness, but also to have
a positive impact by informing policy and practice (Creemers and Kyriakides
2006). Since EER was previously mainly concerned with searching for evidence
of existing effective practices rather than making use of a knowledge base to
improve practice, this is an important shift in the research agenda and we here
deal with methodological issues that have arisen from this. In this chapter, it is
argued that theory-driven evaluation studies can be used to provide new links
between EER and policy and practice. For this reason, the main features of 
this approach are described and it is demonstrated how EER creates such new
linkages. Moreover, it is shown that EER can influence the design of different
types of evaluation studies so that in-depth answers concerning why specific
reform policies are more or less effective can be provided to policymakers
(Creemers and Van der Werf 2000). This can help us establish an evidence-
based approach in policymaking and a theory-driven approach in improving
education (see also Chapter 6). Finally, it is claimed that evaluation studies should
contribute to the development of a theoretical framework of educational
effectiveness since data emerging from such studies will help us understand
better its complex and dynamic nature. In order to design theory-driven evalua-
tion studies that can achieve the main purposes described, the methodological
orientations presented in the second part of the book should be taken into
account by both researchers and evaluators.

Designing theory-driven evaluation studies

Theory-driven evaluation is a collection of different methodological approaches
that can be used by evaluators in trying to understand the impact of a reform
policy evaluation, such as those of programme theory, theories-of-change, and
realism (Bledsoe and Graham 2005; Rosas 2005). In all of these perspectives,
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social programmes are regarded as products of the human imagination; they are
hypotheses about social betterment (Bickman 1985). Programmes chart out a
perceived course where wrongs might be put right, deficiencies of behaviour
corrected and inequalities of condition alleviated. Programmes are thus shaped
by a vision of change and social justice and they succeed or fail according to
the veracity of that vision. In respect to these, evaluation has the task of testing
out the underlying programme theories (Chen and Rossi 1987) but also of
identifying unintended consequences, which may or may not be beneficial. When
one evaluates, one must always return to the core theories about how a
programme is supposed to work and then interrogate it by asking whether the
basic plan is sound, plausible, durable, practical and, above all, valid.

Evaluation projects that are theory-driven take into account the needs and
issues raised by the various stakeholders associated with an innovation, such as
the practitioners and the policymakers. However, the evaluation agenda behind
these projects are also not entirely defined by the stakeholders. The overall
agenda is expanded in such a way as to allow evaluators not only to provide
answers to the questions raised by stakeholders but also to help them understand
the reasons why a reform is more or less effective (Weiss 1997). In this chapter,
it is argued that in order to provide such answers, evaluators in education should
make use of the growing knowledge base of EER as it is concerned with the
correlates of effective practice and provides theories about their relationships
with each other and with student outcomes. Educational effectiveness can be
seen as a theoretical foundation upon which can be built better evaluation studies
in education. Further, programmes are embedded in social systems as they are
delivered (Shaw and Replogle 1996). As a result, it is through the workings of
entire systems of social relationships in and outside the classroom and/or the
school that any changes in behaviours, events and social conditions in education
are put into effect. Serving to aid an understanding of variation within an effective
implementation of a reform, theories of educational effectiveness can help
evaluators identify factors most closely associated with the effective implementa-
tion. Moreover, in making use of these theories evaluators may also contribute
to the development of the knowledge base of EER itself.

A typical example of a theory-driven evaluation is the evaluation of a 1998
Cypriot reform that concerned the use of schema theory in teaching mathematics
(Kyriakides et al. 2006). Five years after the introduction of the reform, an
evaluation study was conducted in order to determine its current implementation.
The study aimed to examine the main stakeholders’ (that is, teachers and student)
reaction to the reform and the factors influencing its effectiveness. The study
not only provided answers to policymakers but also revealed that student
achievement was determined by a number of factors related to teachers’ and
students’ personal characteristics and teachers’ reaction to the reform itself. The
research verified the decisive role of teachers in implementing any reform. Based
on the findings of this study and drawing on the theoretical assumptions of the
‘emergent design’ research model, a conceptual framework for conducting
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programme evaluations was proposed that attributes a central role to teachers’
classroom behaviour. It was claimed that teacher effectiveness research could be
a foundation upon which to design studies regarding the evaluation of reforms.
In turn, this study revealed that EER can be seen as a foundation upon which
a theory-driven evaluation project can be designed. Furthermore, this study
reveals that it is possible to combine theoretical models of EER with evaluation
projects that have their agendas defined by different stakeholders for political
and practical reasons. Such projects contribute to the development of the
knowledge base of EER and provide more elaborate and better answers to 
the questions posed by the various stakeholders of education.

The last part of this section provides more guidelines for conducting theory-
driven evaluation studies that are based on educational effectiveness models, and
a theoretical framework is offered (see Figure 4.1) that leads to the following
observations.

First, we recommend that evaluators reformulate the research questions that
policymakers may have in relation to a reform process. In doing so, the theory
upon which a reform is based and the main characteristics of the theoretical
model that they consider as appropriate should be taken into account. The chosen
model should meet the following criteria based on the current knowledge base
of EER. First, the model should be multilevel in nature and refer to factors
operating at different levels such as students, teachers/classes/departments,
schools and various features of the local and national context. It should outline
hypothesized relationships between factors and student outcomes (for example,
linear or nonlinear) and should refer to relationships among factors that exist
both within and across levels. Second, the model should provide a clear framework
for measuring the functioning of factors. Finally, the model should have sufficient
empirical support. This implies that the multilevel structure of education and
the factors that operate at different levels should at least be considered. For
example, a reform programme implementing a reduction in class size could
investi gate its impact on the quality of teaching, factors describing teacher and
student behaviour in the classroom and only then, finally, student outcomes.
Therefore, the reformulation of the evaluation questions of the stakeholders can
be seen as a starting point for the design of the evaluation plan.

After the reformulation of policy questions, the second step should be to
design an evaluation plan. Evaluators should not only attempt to achieve the
summative purpose of evaluation but also address formative purposes. The latter
are closely related to the implementation of the reform, whereas the summative
aspect of evaluation is expected to study both short- and long-term effects of
the reform on student outcomes. Given that variation in the implementation of
reforms is expected, we propose that evaluators need to focus their attention on
the behaviour of those expected to make use of it. Data concerning the impact
of the reform on teachers’ and students’ behaviours as well as on the behaviours
of other stakeholders may help to identify factors associated with its effective
implementation. The chosen evaluation model may even be of use in identifying
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Reformulate the questions of stakeholders by taking
into account:

• the main characteristics of the chosen theoretical
 model of EER that is empirically supported and 
 multilevel in structure by referring to uni- or multi-
 dimensional factors at different levels;
• the theory underlying the reform.

Design the evaluation plan:

• Summative evaluation: looking at short and long
 term effects on student outcomes.

• Formative evaluation: looking at the
 implementation of the reform.
 -  use the chosen model of EER to examine 
    variation in the implementation;
 -  evaluate the behaviour of teachers, students
    and other stakeholders;
 -  search for learning opportunities offered to 
    students, teachers and other stakeholders.

Design of the evaluation study/collecting and
analysing data:

• conduct longitudinal or group-randomization
 experimental studies;
• develop instruments based on the chosen model
 of EER;
• use multilevel approach.

Report to policymakers, practitioners and other
stakeholders.

Make use of the findings of the study for the further
development of the chosen model and this evaluation
framework. 

Figure 4.1 A framework for conducting theory driven evaluation studies 
in educational effectiveness



the impact of such effectiveness factors and may also suggest how the reform
could be redesigned in such a way that it would provide further support to those
who need it. Rather than discussing issues related to the existence of prescribed
plans for implementing reforms, there is a need to examine how teachers use
and modify these plans in order to meet the needs of students and promote
learning. Finally, instead of giving too much emphasis to students’ reactions to
a reform, it is important to examine what learning opportunities students and
other stakeholders (for example, teachers and headteachers) have been provided
with by participating in the reform.

The third step is the design of the study and should feature the collection
and analysis of data. The framework proposed here suggests that beyond exam-
ining student progress in terms of learning outcomes, we also need to collect
longitudinal data for both teachers and students. Namely, it is worth examining
both short-term and long-term effects on students since there is evidence that
reforms and intervention programmes may not have enduring effects on student
learning (Plewis 2000). This framework also suggests that evaluators should
examine whether teachers improve their practices throughout the years as a conse-
quence of implementing the reform (that is, the reform itself could be considered
as a force able to bring about change in teacher practice). In order to achieve
these purposes, either an experimental study should be conducted by following
the group randomization approach mentioned earlier or a longitudinal design
should be used (see also Chapters 5 and 6). The choice of this design depends
not only on practicality issues but also on whether the reform programme is
implemented in the same way across the participating teachers/schools or 
by offering different treatments to different groups (Kyriakides et al. 2006). The
chosen model of EER and the way that factors are defined are both expected
to help evaluators design appropriate instruments, although they are also expected
to investigate the properties of these before conducting the main evaluation. In
this book, Chapters 8, 9 and 10 detail how different measurement theories 
can be used for this purpose. Finally, the multilevel structure of the data to be
collected should also be taken into account through the use of appropriate
analysis techniques, such as multilevel modelling techniques (see Chapter 11)
or SEM techniques (see Chapter 12).

In the fourth phase, evaluators are expected to report the results to different
stakeholders. If a participatory model is adopted, then different reports for
policymakers and teachers, but also for parents and students, should be produced.
However, beyond providing answers to the specific questions raised by the
policymakers and other stakeholders concerning the impact of the reform and
possibilities for its development, evaluators are also expected to draw implications
for the further development of the chosen model of EER and for the development
of the proposed evaluation framework presented above.

The framework proposed here does not aim to provide a comprehensive model
for evaluating educational reforms however. Rather, it instead aims to incorporate
different theoretical frameworks into a single model, acknowledging the fact that
each theoretical framework could illuminate different aspects of the reform under
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scrutiny. It is argued that the theoretical models of EER could have an important
role in this process. However, further research is needed to refine and elaborate
this framework, especially since it did not arise from empirical evidence or the
results of evaluation studies. Again, we underline that the evaluation framework
is offered as a set of hypotheses that need to be tested further; we believe though
that it provides a framework for developing a dynamic rather than a static model
of evaluating educational reforms.

Establishing a theory-driven and evidence-
based approach to improving education

Although the responsibility for, and the improvement of, educational practice
cannot be dictated by educational theory and research, it is a major objective of
educational science to contribute to the effectiveness and improvement of
education by providing a knowledge base for practice and by helping schools
develop effective intervention programmes (Creemers and Kyriakides 2006).
However, the relationship between general practice in education, science and,
specifically, EER has not always been successful. There are many publications
that spell out problems in attempts to create better links between theory and
practice in education. In fact, these publications point out differences in approach,
implementation problems and differences between teachers and schools that
should make it almost impossible to use existing theoretical ‘knowledge’ in
school improvement (Creemers and Reezigt 1997; Scheerens and Bosker 1997;
Teddlie and Reynolds 2000). By contrast, it would be reasonable to expect that
there might be a good link between EER (which aims to develop knowledge
about what works in education and why) and the school improvement orienta-
tion, which aims to improve and develop education in classrooms and schools.
The explicit purpose of those who initiate research on the effectiveness of
classrooms, schools and educational systems is, after all, that the results of this
research could be used in practice. For example, one of the major aims of the
1988 establishment of the International Congress for School Effectiveness and
Improvement (ICSEI) was to bring together researchers, practitioners and
policymakers in productive co-operation for the benefit of education in general
and for the development of the participating ‘disciplines’.

In recent years, there have been several examples of productive co-operation
between school effectiveness and school improvement and new ways of merging
the two traditions/orientations have been attempted (Creemers and Reezigt
2005; Gray et al. 1999; MacBeath and Mortimore 2001; Reynolds and Stoll
1996; Reynolds et al. 2000; Stoll et al. 1996). However, after two decades one
might conclude that the link between EER and school improvement is still
problematic. Research on school effectiveness has strongly focused on student
outcomes and the characteristics (factors) of classrooms, schools and systems
associated with these outcomes without looking at the processes that are needed
to change the underlying situation and processes (Teddlie and Reynolds 2000).
By contrast, school improvement has mainly been concerned with the process
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of change in classes (and to a larger extent in schools) without looking too much
at the consequences for student outcomes and without criteria to identify what
processes were linked to positive effects. This was under the assumption that 
if the processes were good, positive outcomes would surely follow (Creemers
and Reezigt 2005). However, in several publications, the reasons for this
disappointing situation have been analysed in order to provide ways for a more
productive co-operation between the two endeavours (Creemers and Reezigt
1997; Reynolds et al. 2000). After a careful analysis of the failure to link research
and improvement effectively, strategies for school improvement that attempt to
combine the strongest elements of research and improvement have since
developed. Major elements of this combination are an emphasis on the evidence
stemming from theory and research and the need to collect multiple data sources
about the achievement of students. Moreover, further major elements of this
combination concern classroom and school processes, the context of individual
schools, and thereby also the development and implementation of programmes
for classes and schools by schools themselves.

In practice, however, there remains sparse evidence in terms of contribution
to student achievement outcomes associated with such an approach. In many
cases, concentrating on processes at the level of individual schools almost
necessarily implies losing a clear focus on the research evidence. For example,
in the Effective School Improvement (ESI) project, which attempted to combine
the knowledge base of EER with knowledge about school improvement, the
final framework still reflected the different orientations (Creemers 2006). One
can easily observe that achievement outcomes do not belong to the core of the
improvement process, which encompasses the improvement of school culture
and school process (Mijs et al. 2005). Therefore, there are clearly still serious
problems in connecting the effectiveness and improvement traditions of enquiry.
The question persists of how best to apply the knowledge base of effectiveness
in practice, or in other words, how to get valid and useful information about
school improvement out of EER (Creemers and Kyriakides 2006).

In this section, we claim that conducting theory-driven evaluation studies on
educational effectiveness contributes to the establishment of a dynamic perspective
on improvement (Creemers and Kyriakides 2008) and helps to establish stronger
links between EER and policy and practice. This perspective gives emphasis to
the use of theory-driven and evidence-based approaches to the development of
improvement strategies and action plans. The importance of such approaches is
discussed below by showing that a valid theory of educational effectiveness and
evaluation data should guide the design of improvement efforts.

Establishing clarity and consensus about the aims of
school improvement

The first step of any school improvement effort is based on the assumption that
it is important to start with a clear understanding of the intended destination
and how one is seeking to improve the quality of education. This could be
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considered ‘a purposeful task analysis’ (Wiggins and McTighe 1998: 8) and sug -
gests a planning sequence, while a commitment to collaborative work also needs
to be established. However, Fullan (1991) points out that people have different
perceptions of change, meaning that it is difficult to reach consensus among the
participants of school reform efforts, although this may be crucial for their
success. Therefore, it is important to establish procedures to ensure clear
understanding among stakeholders as to the aims of any school improvement
programme. To this end, results of theory-driven evaluation studies based on
EER can be a useful tool for helping stakeholders realize that the ultimate aim
of any school reform effort should be an improvement in student achievement
across the school. This is the basic assumption upon which theory-driven
evaluation studies in EER are based. For this reason, a major emphasis is given
to measuring the short- and long-term effects of reforms on student outcomes
(see Figure 4.1). It can also be argued that unless learning and learning outcomes
are improved, any school improvement effort could not be considered truly
successful no matter how much it has managed to improve any aspect of the
climate of the school. This is due to the fact that learning is the mission of 
the school and so the main emphasis should be given to improving learning
outcomes. An example of such an approach is the evaluation of the impact of
network learning communities in England or New Community Schools in
Scotland where a range of positive impacts were reported by teachers and head
teachers but where little impact on student attainment was found (Sammons 
et al. 2007; Sammons et al. 2003).

Addressing school factors that are able to influence
learning and teaching to improve and/or maintain
the quality of schools

Beyond providing support to school stakeholders in the design of improvement
programmes, the results of theory-driven evaluation studies in EER suggest that
school stakeholders should attempt to build whole school reform efforts that
are able to improve the functioning of school level factors that have been included
in the chosen effectiveness model (see Figure 4.1). This is due to the fact that
the chosen model has to be multilevel in nature and thereby refers to school
factors that are expected to be related to student learning outcomes. Therefore,
designing improvement efforts focusing on only the classroom-level factors may
improve the teaching practice of individuals but may not necessarily improve
the functioning of the school-level factors also included in the chosen model.
In such cases, teachers who may manage to improve aspects of their teaching
practice that have been addressed by a specific improvement programme will
need at some stage some other type of support to improve other teaching skills.
However, in cases where a reform does not aim to improve school factors, such
support may not be available when needed and the long-term effect of a
programme aiming to improve teaching practice could be questioned. At the
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same time, it is also acknowledged that school stakeholders should develop
interventions/improvement efforts that will not only improve the functioning
of the school-level factors but will ultimately promote the quality of teaching
and eventually raise student achievement. Therefore, results emerging from
theory-driven evaluation studies will ideally demonstrate that efforts at school
improvement give emphasis to improving not only the teaching practice but
have improved practice through improved functioning of school-level factors as
well. In this way, not only are new learning opportunities offered to different
stakeholders, as is supported by the proposed evaluation framework (see Figure
4.1), but also the conditions are provided that enable them to improve their
teaching practice continuously.

Collecting evaluation data and identifying priorities
for improvement

The use of a valid theory to design an improvement effort cannot in itself ensure
that the aims of a proposed reform will be achieved even if it is implemented
in the way it was designed (Kyriakides et al. 2006). In this section, a theory-
driven approach to improve the quality of schools is suggested and emphasis is
given to using empirical evidence to identify the strengths and weaknesses of a
school and design relevant improvement efforts. The importance of using an
evidence-based approach to school improvement arises from the fact that several
studies have revealed that the evaluation of school policy is an important factor
operating at the school level (Creemers and Kyriakides 2008; de Jong et al.
2004; Scheerens and Bosker 1997). Therefore, based on the results that emerge
from theory-driven evaluation studies, the strengths and weaknesses of teachers/
schools/systems should be identified. Moreover, stakeholders may also identify
priorities for improving the functioning of specific factors and/or grouping of
factors. Furthermore, evaluation data may reveal more than one improvement
priority for each teacher/school/educational system, although the identification
of more than one weakness is not always helpful for identifying how a particular
teacher can develop professionally. However, due to the dynamic nature of
models of EER, different priorities for professional development for each
teacher/school/educational system can also emerge from such theory-driven
evaluation studies.

Establishing a developmental evaluation strategy

The suggestions for theory-driven evaluation studies provided in the previous
section may also help stakeholders establish a developmental evaluation strategy
in their attempt to improve the effectiveness status of teachers and schools.
However, it is important to note that effectiveness studies support the use of a
continuous model of evaluation since such a model allows teachers/schools/
systems to adapt their policy decisions in relation to the needs of different groups
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of school stakeholders. It can therefore be claimed that the results of theory-
driven evaluation studies will eventually show that a developmental evaluation
strategy should be established at either the macro or micro level. This strategy
should ultimately contribute to the improvement of the effectiveness of teachers
and schools.

One example of this might be a situation where a developmental evaluation
strategy of the school policy and of the actions taken for improving relations
between school and parents can be used (Kyriakides 2005). In such a case, the
evaluation process is expected to follow a linear sequence that starts with the
development of a plan for school policy on partnership and from which priorities
and targets then emerge along with associated performance indicators. At the
next stage, evaluation questions that follow from the targets and performance
indicators will be established to provide the criteria for data collection. Next,
the data will be collected and analysed and fed back into the formative process
of evaluation. In this way, stakeholders will be able to find out what is happening
during the implementation of the school policy on partnership.

This strategy for improving effectiveness has a number of significant features.
The evaluation process is expected to assist the implementation and development
of a school policy since the establishment of targets and performance indicators
may specify the developmental process of the partnership policy. Moreover,
evaluation data may be related to the aims of the policy through the evaluation
questions. As a consequence, a logical chain of action that relates aims to targets,
evaluation questions, and to particular information sources can then be
established. However, although this evaluation process is linear, it is very likely
to be less tidy in practice. Once the evaluation process is underway, different
working groups of stakeholders (for example, co-ordinators of partnership policy,
teachers of different subjects) may implement parts of the policy at different
rates (Kyriakides 2005). However, the extent to which there is a gap between
the implementation of a reform policy and the design of an intervention could
be identified. Thus, the results of theory-driven evaluation studies, especially
those addressing the formative aim of evaluation, may help stakeholders take
decisions on how to improve school policy or how to provide additional support
to those working groups that may need it (Kyriakides et al. 2006). However,
new research is needed to investigate the impact that the use of theory-driven
evaluation studies may have on establishing a dynamic perspective on school
improvement, as described above.

The contribution of theory-driven evaluation
studies to establishing theoretical models of EER

In the last section of this chapter, it is argued that results of theory-driven
evaluation studies can contribute to the further theoretical development of EER.
This is because the procedure followed in these evaluations is such that data are
collected on factors included in the theoretical models of EER and student
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achievement gains. Moreover, the design of these studies is expected to be made
more rigorous by using appropriate methodological approaches. Therefore, more
valid and reliable data on the functioning of factors and on the effectiveness
status of teachers and schools are likely to be collected and can then be used
for testing the relationships included in effectiveness models. In addition, these
studies might also be concerned with the longer term effects of a reform and
thereby data would be collected that could further elaborate on the dynamic
perspective of educational effectiveness. For example, changes in the effectiveness
status of teachers and schools could be observed and linked to changes in the
functioning of factors operating at different levels (Kyriakides and Creemers
2009). Furthermore, these studies may also refer to variables that are strongly
related to the theory upon which a reform is designed but which may not yet
be included in the chosen model of effectiveness. In cases where the results of
such studies reveal that these variables are associated with student achievement
(and thereby should be treated as effectiveness factors), the underlying theoretical
model could then be expanded to test this assumption further. Finally, since
these studies follow a specific framework, experiences gained from conducting
them could help the further development of the framework itself and the
establishment of stronger links between EER and the evaluation of reform
policies. Furthermore, in the previous section it was also argued that these studies
could contribute to the establishment of a theory-driven and evidence-based
approach to the improvement of policy and practice. Thus, the extent to which
such an approach can improve the quality of education at macro and micro levels
may also be investigated by the theory-driven evaluation studies discussed here.

Our argument that theory-driven evaluation studies based on EER could
contribute in the development of this field is also supported by the fact that
previous evaluation studies have already helped researchers to test the validity
of various theoretical models (Kyriakides and Tsangaridou 2008; Reezigt et al.
1999; Van der Werf et al. 2001) and to identify which of the models’ assumptions
are most useful for understanding the impact that reforms have on learning
outcomes. At the same time, results from these studies could help to identify
possible reasons why specific assumptions are not supported by available empirical
evidence and would thereby contribute to refining or further developing these
models. For example, the study by Reezigt et al. (1999) raised doubts about
the relevance of the concept of consistency developed in the comprehensive model
(Creemers 1994) and also provided a basis for not including this concept in the
dynamic model (Kyriakides 2008) Thus, the dynamic model is partly based on
the comprehensive model, but at the same time encourages researchers to look
at consistency through the introduction of stage as a measurement dimension.
This development was found to be useful in understanding the functioning 
of factors and describing the dynamic nature of effectiveness (Kyriakides and
Creemers 2008).

Finally, results of theory-driven evaluation studies that are based on a model
of EER can help us test the generalizability of results from other studies in order
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to test the validity of the chosen model (Kyriakides 2008). As mentioned above,
the model chosen should have enough empirical support to warrant this.
Therefore, results of theory-driven evaluation studies based on such a model
may further support its validity and could be taken into account by quantitative
syntheses of effectiveness studies that search for evidence of the generic nature
of the model. At the same time, in cases where the model is not supported by
the results of a theory-driven evaluation study, one should be careful in drawing
conclusions concerning the invalid character of the model. In order to establish
such arguments, replication studies should be conducted to help us identify the
extent to which (or under which conditions) the factors of the model are not
useful in predicting variation in student learning outcomes. In this way, we can
further specify the differential character of the chosen model and thereby
contribute significantly to the theoretical development of the field.

Main conclusion emerging from Part A

In Part A of this book, readers have been provided with an account of the 
state of the art of EER, which has explicitly shown that EER has benefitted
greatly from applying gradually more methodologically rigorous approaches in
conducting effectiveness studies. For example, some of the studies conducted
during the third and fourth phases of EER were only made possible due to
further advances in research methodology, such as the use of advanced multi-
level modelling and SEM techniques. As a result, one can identify reciprocal
improvements in both the methodology of EER and in the establishment of the
knowledge base of the field. Part of this improvement was also a movement
from descriptive questions concerned with the characteristics of effective and
ineffective schools to searching for direct and indirect associative and causal
relations between factors and learning outcomes. As a consequence of this shift
in the research agenda of EER, the methodological issue of causality is becoming
a critical one for the future development of the research methods used. Moreover,
a stronger emphasis has emerged for establishing theories explaining the process
of effectiveness. However, this again implies the need for further development
of EER methodology in order to test the validity of these and expand the
theoretical models further.

In terms of methodological issues that need to be addressed in designing
such studies, this chapter mentioned that the design and analysis of data should
be improved in order to enable researchers to better understand the relations
between factors and outcomes, and the relations among factors. Moreover, the
need to consider the use of different criteria for measuring effectiveness was
raised and issues associated with how we can relate these criteria were discussed.
The use of two different dimensions of measuring effectiveness (namely, quality
and equity) is of particular interest and should be addressed in future studies.
However, searching for relations in measuring school effectiveness by using each
of these two dimensions implies that further methodological development in
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analysing data is needed. Furthermore, the use of different criteria for measuring
effectiveness reveals the need to measure effectiveness in relation to student
achievement in broader domains of educational outcomes, such as affective,
psychomotor, social, and new-learning outcomes. However, in doing so, issues
associated with measurement should be considered to allow the development of
instruments to collect valid and reliable data on such outcomes. At the same
time, practicality issues arising from administering these instruments should 
be taken into account. In this context, measurement theories should guide our
attempt to establish appropriate instruments for exploring student outcomes 
in these broader educational domains. Measurement theories should also be
considered in designing and investigating the psychomotor properties of
instruments measuring the function of different effectiveness factors.

In the last chapter of Part A, it has been argued that EER should ultimately
attempt to influence policy and practice by establishing theory-driven and
evidence-based approaches to school improvement. In the past, efforts to establish
links between EER and improvement took place, but their success was very
limited. Part A shows that EER could have a greater impact on policy and practice
if theory-driven evaluation studies based on theoretical models of EER are
conducted. The use of this kind of evaluation study draws attention to specific
methodological issues, which were discussed in this chapter. Moreover, a
framework for conducting such studies was then provided using methodological
advances that are also useful for conducting basic research on effectiveness. It
was made explicit that theory-driven evaluation studies will not only provide
different stakeholders with a better picture of the impact of a reform policy and
how it can be improved, but their results will also contribute to the further
theoretical development of the field.

In Part A of the book, it has also been shown that EER needs to use and
apply different types of research design and especially longitudinal and experi-
mental studies. It was shown that each research method can address specific
research questions in an appropriate way and contribute not only to developing
and testing the theoretical framework of EER but also to establishing better
links between EER and the improvement of practice. However, beyond collecting
data through a specific empirical study, researchers can also undertake quantitative
syntheses of effectiveness studies and test the generic nature of factors included
in the theoretical models. Thus, in Part B of this book, we illustrate how different
types of research design can be conducted (such as longitudinal, experimental
and mixed methods – see Chapters 5, 6 and 7), and we also refer to advancements
made in conducting meta-analyses (Chapter 13). The importance of conducting
secondary analyses of data from major international comparative studies is also
raised. In different chapters of this second part, it is shown that two measurement
theories (Classical Test Theory and Item Response Theory) can significantly
contribute to the further development of EER (Chapters 8, 9 and 10). In
particular, this development is achieved by improving the quality of instruments
used to collect data and by allowing us to search for relations in measuring
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effectiveness by using different criteria. Thus, Chapters 8, 9 and 10 refer to these
two different measurement theories and show how Item Response Theory and
Generalizability Theory can be used for developing and testing the validity of
psychometrically appropriate research instruments. Finally, due to the complexity
of the nature of educational effectiveness and the need to elaborate on it by
drawing on empirical data that can emerge from any kind of study (from basic
research to evaluation), the use of advanced techniques in analysing data is
apparent. Thus, Chapters 11 and 12 refer to advanced techniques in analysing
data. More specifically, Chapter 11 refers to the use of multilevel modelling
techniques whereas SEM techniques are discussed in Chapter 12.

References

Bickman, L. (1985) ‘Improving established statewide programs – a component theory of
evaluation’, Evaluation Review, 9(2): 189–208.

Bledsoe, K.L. and Graham, J.A. (2005) ‘The use of multiple evaluation approaches in
program evaluation’, American Journal of Evaluation, 26(3): 302–19.

Chen, H.T. and Rossi, P.H. (1987) ‘The theory-driven approach to validity’, Evaluation
and Program Planning, 10(1): 95–103.

Creemers, B.P.M. (1994) The effective classroom, London: Cassell.
Creemers, B.P.M. (2006) ‘The importance and perspectives of international studies in

educational effectiveness’, Educational Research and Evaluation, 12(6): 499–511.
Creemers, B.P.M. and Kyriakides, L. (2006) ‘A critical analysis of the current approaches

to modelling educational effectiveness: The importance of establishing a dynamic model’,
School Effectiveness and School Improvement, 17(3): 347–66.

Creemers, B.P.M. and Kyriakides, L. (2008) The dynamics of educational effectiveness:
A contribution to policy, practice and theory in contemporary schools, London: Routledge.

Creemers, B.P.M. and Reezigt, G.J. (1997) ‘School effectiveness and school improvement:
Sustaining links’, School Effectiveness and School Improvement, 8: 396–429.

Creemers, B.P.M. and Reezigt, G.J. (2005) ‘Linking school effectiveness and school
improvement: The background and outline of the project’, School Effectiveness and School
Improvement, 16(4): 359–71.

Creemers, B.P.M. and Van der Werf, G. (2000) ‘Economic viewpoints in educational
effectiveness: Cost-effectiveness analysis of an educational improvement project’, School
Effectiveness and School Improvement, 11(3): 361–84.

De Jong, R., Westerhof, K.J. and Kruiter, J.H. (2004) ‘Empirical evidence of a
comprehensive model of school effectiveness: A multilevel study in mathematics in the
1st year of junior general education in the Netherlands’, School Effectiveness and School
Improvement, 15(1): 3–31.

Fullan, M. (1991) The new meaning of educational change, New York: Cassell.
Gray, J., Hopkins, D., Reynolds, D., Wilcox, B., Farrell, S. and Jesson, D. (1999)

Improving schools: Performance and potential, Buckingham: Open University Press.
Kyriakides, L. (2005) ‘Evaluating school policy on parents working with their children

in class’, The Journal of Educational Research, 98(5): 281–98.
Kyriakides, L. (2008) ‘Testing the validity of the comprehensive model of educational

effectiveness: A step towards the development of a dynamic model of effectiveness’,
School Effectiveness and School Improvement, 19(4): 429–46.

72 The art of Educational Effectiveness Research



Kyriakides, L., Charalambous, C., Philippou, G. and Campbell, R.J. (2006) ‘Illuminating
reform evaluation studies through incorporating teacher effectiveness research: A case
study in mathematics’, School Effectiveness and School Improvement, 17(1): 3–32.

Kyriakides, L. and Creemers, B.P.M. (2008) ‘Using a multidimensional approach to
measure the impact of classroom level factors upon student achievement: A study testing
the validity of the dynamic model’, School Effectiveness and School Improvement, 19(2):
183–205.

Kyriakides, L. and Creemers, B.P.M. (2009) ‘Explaining stability and changes in schools:
A follow-up study testing the validity of the dynamic model’, paper presented at the
EARLI Conference, Amsterdam, August 2009.

Kyriakides, L., Demetriou, D. and Charalambous, C. (2006) ‘Generating criteria for
evaluating teachers through teacher effectiveness research’, Educational Research, 48(1):
1–20.

Kyriakides, L. and Tsangaridou, N. (2008) ‘Towards the development of generic and
differentiated models of educational effectiveness: A study on school and teacher
effectiveness in physical education’, British Educational Research Journal, 34(6): 807–83.

MacBeath, J. and Mortimore, P. (2001) Improving school effectiveness, Buckingham: Open
University Press.

Mijs, D., Houtveen, T., Wubells, T. and Creemers, B.P.M. (2005) ‘Is there empirical
evidence for school improvement’, paper presented at the ICSEI 2005 Conference,
Barcelona, January 2005.

Plewis, I. (2000) ‘Evaluating educational interventions using multilevel growth curves:
The case of reading recovery’, Educational Research and Evaluation, 6(1): 83–101.

Reezigt, G.J., Guldemond, H. and Creemers, B.P.M. (1999) ‘Empirical validity for a
comprehensive model on educational effectiveness’, School Effectiveness and School
Improvement, 10(2): 193–216.

Reynolds, D. and Stoll, L. (1996) ‘Merging school effectiveness and school improve-
ment: The knowledge base’, in D. Reynolds, R. Bollen, B. Creemers, D. Hopkins, 
L. Stoll and N. Lagerweij (eds) Making good schools: Linking school effectiveness and
school improvement, London: Routledge, pp. 94–112.

Reynolds, D., Teddlie, C., Hopkins, D. and Stringfield, S. (2000) ‘Linking school
effectiveness and school improvement’, in C. Teddlie and D. Reynolds (eds) The
international handbook of school effectiveness research, London: Falmer Press, pp. 206–31.

Rosas, S.R. (2005) ‘Concept mapping as a technique for program theory development –
An illustration using family support programs’, American Journal of Evaluation 26(3):
389–401.

Sammons, P., Mujtaba, T., Earl, L., Gu, Q. (2007) ‘Participation in network learning
community programmes and standards of pupil achievement: Does it make a difference?’,
School Leadership and Management, 27(3): 213–38.

Sammons, P., Power, S., Elliot, K., Campbell, C., Robertson, P. and Whitty, G. (2003)
New Community Schools in Scotland: Final report – national evaluation of the pilot phase,
Edinburgh: Scottish Executive Education Department.

Scheerens, J. and Bosker, R.J. (1997) The foundations of educational effectiveness, Oxford:
Pergamon.

Shaw, K.M. and Replogle, E. (1996) ‘Challenges in evaluating school-linked services –
toward a more comprehensive evaluation framework’, Evaluation Review, 20(4): 424–69.

Stoll, L., Reynolds, D., Creemers, B. and Hopkins, D. (1996) ‘Merging school effectiveness
and school improvement: Practical examples’, in D. Reynolds, R. Bollen, B. Creemers,

Theory driven evaluation studies  73



D. Hopkins, L. Stoll and N. Lagerweij (eds) Making good schools, London/New York:
Routledge, pp. 113–47.

Teddlie, C. and Reynolds, D. (2000) The international handbook of school effectiveness
research, London: Falmer Press.

Van der Werf, G., Creemers, B.P.M. and Guldemond, H. (2001) ‘Improving parental
involvement in primary education in Indonesia: Implementation, effects and costs’, School
Effectiveness and School Improvement, 12(4): 447–66.

Weiss, C.H. (1997) ‘How can theory-based evaluation make greater headway’, Evaluation
Review, 21(4): 501–24.

Wiggins, G. and McTighe, J. (1998) Understanding by design, Alexandria, VA: ASCD.

74 The art of Educational Effectiveness Research



The contribution of different
methodological orientations
The development of educational
effectiveness research

Part B





Longitudinal designs

Jan-Eric Gustafsson
University of Gothenburg, Sweden

Introduction

As has been made clear in the previous chapters of this book, there are many good
reasons to use longitudinal designs in EER, and these have been used much 
more frequently during the last two decades. However, there are many different
types of longitudinal designs and these are not always easily implemented. It is
therefore necessary to have a firm grasp of the advantages and disadvantages of 
the different types of design. The main aim of the current chapter is to provide a
basis for understanding the benefits and disadvantages of longitudinal studies.
However, the field is enormously large and of great complexity so no claims of
completeness are made. Rather, this chapter is a conceptually oriented introduction
to the use of longitudinal designs in EER, with references for further reading.

What is special about longitudinal designs?

One fundamental characteristic of a longitudinal design is that it involves
observations of the same units (for example, students) at more than one point
in time. It is thus different from the cross-sectional (or survey) design, in which
the units are only observed once. Another fundamental characteristic of longitu-
dinal design is that it is observational; it does not involve manipulations, such
as assigning different groups of subjects to different treatments. In this way it
is different from the experimental design, which does exactly this.

However, the characterization of longitudinal design as involving repeated
observations of the same units is much too simplified to carry any important
information, and further complexities are needed to fill out the picture. However,
it must also be stressed that it is possible to combine experimental and longitu-
dinal designs in a large variety of ways. For example, one can create longitudinal
intervention designs (Antoniou 2009; Demetriou 2009).

One may also ask what it means to observe units at more than one point in
time. Suppose that we conduct a survey at the end of grade nine, in which we
include questions about which school marks the students obtained in mathematics
in grades six and nine. Given that we have information about the students’ level
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of school performance at two time points, it could be claimed that this is a
longitudinal study. Such a design is commonly referred to as a retrospective
longitudinal design, but it is considered to generate data of lower quality than
a study with a prospective longitudinal design, which in our example would
involve starting in grade six and following the students through to grade nine.
There are two reasons why the prospective design is superior. One is that the
retrospective design relies on memory, and it is a well known fact that human
memory is unreliable and often systematically biased. The other is that the grade
nine sample is likely to be a biased non-representative sample because of 
processes of attrition due, for example, to movement, non-promotion and grade-
skipping. For these reasons, retrospective longitudinal designs should be avoided.
However, it must be realized that prospective longitudinal designs often also
include certain elements of retrospection in questionnaire items as well.

Even if it is agreed that there should be repeated observations of the same
units at more than one point in time, one may still ask if there should be a
certain minimum number of time points for a design to qualify as longitudinal.
It has been observed (Rogosa et al. 1982) that when there are only two time
points, the amount of information available for studying individual change and
development is very limited, and that it is therefore usually desirable to have
observations from more time points. There is, however, general agreement
among methodologists that a design with observations at two points still qualifies
as longitudinal.

Another part of the definition of a longitudinal design that lacks clarity is the
meaning of the term ‘unit’. One of the characteristics of EER is that it operates
with several different ‘units’, such as students, teachers, classroom, schools,
school-districts and school-systems, and these are typically hierarchically nested.
One obvious research design is to apply repeated measurements to the students
along with observations of characteristics of their teachers, classrooms and schools.
Such designs, in which the micro-level units are followed over time, correspond
to our intuitive notions of the meaning of longitudinal research, and these are
referred to with different labels. Keeves (1988) refers to such designs as ‘time
series designs’, while others call them ‘panel designs’ or just longitudinal designs.

It is also possible to conduct longitudinal research in which there are new
micro-level units at each wave of measurement. Consider, for example, research
in which we are interested in the stability and consistency over time of achieve-
ment differences between schools. This research issue has the school as a unit,
and to investigate it empirically would require that we conduct repeated measure-
ments of a set of schools by observing the level of achievement of, for example,
their grade nine students at each measurement. However, for each of these
measurements, there will be a new set of grade nine students in each school, 
so the design is longitudinal with respect to the schools but not with respect to
the students.

Another example of a design that is longitudinal at a macro-level but not a
micro-level is the design adopted by many of the international investigations of
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educational achievement (for example, PIRLS, PISA and TIMSS) in which
studies are repeated every third, fourth or fifth year. The repetition is done in
such a way that samples are drawn from the same population and the achievement
tests are linked so that results are expressed on the same scales. This provides a
basis for investigating trends in the levels of achievement for those countries
that participate repeatedly. Thus, this design is longitudinal at the level of school
systems, but not at the student level. Keeves (1988) refers to this kind of
longitudinal research as a ‘trend design’, and while this kind of design has not
been common in previous educational research, it has been used more frequently
within other disciplines (such as political science) under labels such as ‘time-
series cross-sectional designs’.

From the discussion above, it is clear that even though the basic idea of the
longitudinal design is simple, there are many different versions and possibilities.
This is one of the reasons why this is such a useful tool in EER. The benefits
of such longitudinal research in EER will now be discussed.

Benefits of the longitudinal approach
The longitudinal approach provides several benefits, but discussing these more
explicitly will provide a clearer understanding of when and why the extra cost
and trouble involved in adopting such a design is worthwhile.

The first and most obvious benefit of the longitudinal approach is that it
allows investigation of issues that have to do with stability and change over time.
There are many important questions within EER along these lines, such as the
development of effects of schools and teachers over time, the constancy and
consistency of effects over time and long-term versus short-term effects. As was
pointed out in Chapter 1, much of the recent EER has directed attention to
such issues, and this has necessitated adoption of longitudinal research approaches
because alternative cross-sectional approaches offer very limited possibilities to
investigate such issues.

The second benefit of longitudinal research is that it provides a better basis
for inference about causality than do cross-sectional designs. It must be empha-
sized, however, that compared to experimental approaches, the longitudinal
approach is considerably weaker when it comes to causal inference (see also
Chapter 3). As a result, it is therefore necessary to bring in strong substantive
theory to support causal inferences when conducting longitudinal research.
Furthermore, there are also several different ways in which longitudinal designs
can improve their basis for causal inference.

First, one necessary requirement for causal inference is that a putative
independent variable precedes the outcome in time. With a longitudinal design,
the time ordering of events is often relatively easy to establish, while in cross-
sectional designs this is typically impossible. It must be emphasized, however,
that even though we may have established a relation between an independent
variable that precedes the dependent variable in time, this is not in itself sufficient
evidence that the relation is causal. The reason for this is that there may be
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another variable that influences both the putative independent and the dependent
variables. If there is no information in the study about theoretically possible
third variables we do not have any possibility to investigate their possible causal
roles, and so run the risk of making an incorrect causal inference.

Such omitted variables may be regarded as the most common and serious
threat against valid causal inference in non-experimental designs. Often ‘selection
bias’ is mentioned as a special category of problems in causal inference (Gustafsson
2007), but selection bias may be seen as just a particular case of the omitted
variable problem. For example, a study reported by Mullis et al. (1993) used a
cross-sectional design and found a significant negative correlation between the
amount of instruction that students had obtained and their reading performance.
Thus, the students who had obtained more teaching were concluded to have
had a lower level of reading achievement. However, it does not seem reasonable
to interpret this relationship as meaning that more direct teaching of reading
had caused the students to read more poorly. Instead, a more reasonable
explanation for the negative correlation is that direct teaching of reading was
part of a compensatory educational strategy, in which poorer readers were
provided with more teaching resources, either in regular education or in special
education. This is an example of selection bias, because the levels of performance
of the groups of students who received different amounts of instruction were
not comparable before they received the instruction. However, we may also
conceive of this as an omitted variable problem, because if we had had information
about the students’ levels of reading performance before they received the
differing amounts of instruction, the differences in initial level of reading
performance could have been controlled for and a correct determination of the
effects of the extra teaching could have been achieved.

With longitudinal designs, it is possible to obtain information about initial,
intermediate and final levels of achievement and to use this information in ‘value-
added’ analyses of for example schools and teachers. Such studies are of great
interest to effectiveness researchers and are also of great practical interest in
correctly determining the education contributions of particular schools for
purposes of school choice, accountability and development. Furthermore, there
has lately been a great amount of focus on the development of designs and
analytical models that feature this ‘value-added’ modelling (for example, OECD
2008; McCaffrey et al. 2004). One of the conclusions from this research is that
controlling for baseline student socio-economic and demographic factors is
insufficient in proxying for initial level of achievement and that measures of prior
performance are needed (OECD 2008: 128).

However, initial levels of achievement may not be the only omitted variable.
Indeed, the great challenge of the omitted variable problem is that potentially
there are an infinite number of omitted variables and no empirical study can
ever aspire to represent more than a small fraction of those relevant. Fortunately,
one of the great benefits of the longitudinal approach is that it offers possibilities
for dealing with at least certain aspects of this problem. Because we may choose
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to analyse longitudinal data in such a way that we only focus on change over
time, omitted variables that stay constant do not exert any influence on the
results. This is an abstract idea that is not easily captured, so a concrete example
is presented below to support an intuitive understanding.

The example is a simple one taken from Gustafsson (2007), who investigated
relations between the mean age of students in different countries in the TIMSS
study and the country’s mean level of performance. There are quite large
differences in the mean age of the students in the countries that participate in
international studies of student achievement, and this is potential source of bias
in the between-country comparisons of achievement. However, the relationship
between age and achievement for 22 countries participating in the TIMSS 
1995 study (Beaton et al. 1996) was only 0.19. Furthermore, for the same set
of countries the correlation in the TIMSS 2003 study was equally low (0.16).
These results seem to indicate that age differences between students participating
in international studies do not have any effect on the outcomes. This is an
unexpected result that is difficult to understand and accept as valid, particularly
given the amount of attention that age differences are given in the discussions
of outcomes in these studies. Inspection of the scatter plot of the relation
between age and mathematics score provides no obvious explanation, except
perhaps that there is a tendency towards curvilinearity: with high-performing
Asian countries having an age close to the mean, and average-performing
countries being found at both extremes of the age variable.

However, a cross-sectional correlation only provides a snapshot of relations
among variables at a particular point in time, and this relation is influenced by
a large number of other variables that are not included in the analyses. For
example, the ‘school-start’ age varies among countries, and this means that
students of the same age may have gone to school for a different number of
years. Given that the number of years of schooling influences achievement, this
variable obviously needs to be taken into account. Further, it is easy to conceive
of many other variables – such as rules for promotion from one grade to another
– that are also correlated with both the mean age of the students and with
achievement but which were omitted from these studies.

One of the most important features of the TIMSS study is that the results
of successive repetitions, which are done every fourth year, are expressed on 
the same scale. This makes it possible to investigate trends in the development
of country levels of achievement. Referring back to the above example, change
scores between 1995 and 2003 were computed for both mathematics achieve-
ment and age. The correlation between the mathematics change variable and
the age change variable was 0.58 (p < 0.005). A regression analysis of mathematics
change on age change then yielded an unstandardized regression coefficient of
37.8, implying that a one-year increase in age was associated with an increase
in mathematics achievement of close to 38 score points.

The two example analyses thus yield dramatically different results, which
illustrates that analysis of cross-sectional data is something quite different from
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analysis of longitudinal data. As has already been pointed out, the cross-sectional
results provide a static snapshot of how the variables happen to relate at a
particular point in time. The change score, in contrast, captures the dynamic
relation between age and achievement. The reason it does this is that those
omitted variables that stay constant over time do not influence the relation
between age and achievement. Rules for ‘school-start’ age and grade promotion
are characteristics of school systems that tend to be very stable. Furthermore,
the variability in age that we observe is largely determined by incidental circum-
stances, such as when holidays make it practical to carry out the assessments
within a particular country. The incidental character of the variability in age
change does not prevent it from being related to mathematics achievement, but
it does reduce the likelihood that it is correlated with any omitted variable.

We can thus conclude that longitudinal designs can offer ways to reduce the
impact of omitted variables on relations between independent and dependent
variables. This is a major benefit of the longitudinal approach, but it must be
realized that it does not come regularly and automatically. Depending upon how
the study is designed and data are analysed, researchers may or may not be able
to take advantage of this benefit.

Challenges of the longitudinal approach

The advantages of the longitudinal approach do not come without a price. The
main problem associated with it is that of attrition, or a successive increase of
missing data over the course of a study. This may be even more of a problem
in EER because of the complex multilevel nature of the phenomenon of
education. For example, students, teachers and school-leaders sometimes relocate
from one school to another, or they are unable to participate in one or more
of the waves of measurement even though they still remain in the study. What
may be even more of a problem is that in many school systems, students are
expected to change teachers (and sometimes classmates and school) when moving
from one grade to another. Thus, what starts out as a simple and neat longitudinal
design of students, teachers and schools is after a few years often a design with
large amounts of missing data and a complex cross-classified design structure.
However, even though these complexities offer great challenges to the researcher,
it should be added that they may offer benefits as well. This is because changes
in combinations of students, teachers and schools sometimes make it possible
to tease out the effects contributed by such different categories, which would
not be possible if they were completely confounded over time.

It also should be mentioned that, recently, sophisticated analytical tools have
been developed that allow the researcher to deal with these complexities. Software
is now available that allows the researcher to explore complex, multilevel and
cross-classified designs. Further, new approaches for dealing with missing data
that are particularly well suited to dealing with longitudinal data have also 
been developed.
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Concerning missing data and its treatment in more detail, the simplest method
for dealing with ‘missingness’ is to apply list-wise deletion. However, unless the
information is missing completely at random (MCAR), this method creates bias
and causes loss of power. There are also sophisticated methods for imputing
missing data based on the data that is not missing (Schafer and Graham 2002).
These methods make better use of the available data, but they carry other
disadvantages, such as disturbing the covariance matrix among the measures.
However, methods for dealing with partial missingness (based on weaker
assumptions) are now available in many programs for analysing longitudinal and
multilevel data. One class of methods, which is often implemented in the current
programs for Structural Equation Modelling (SEM) and multilevel analysis, is
based on maximum likelihood estimation. These methods will not introduce
bias, providing that the data is missing at random (MAR). While this assumption
may sound restrictive, it must be not be confused with the assumption that the
data is MCAR. The latter assumes that cases with partially missing information
should not be different in any other way from those with complete data. This
is a very restrictive assumption that is unlikely to be met by the data typically
analysed in EER. However, the assumption that MAR is weaker is conditional
upon available data such that the missing information is not systematically different
from the non-missing information. This allows for the fact that missing informa-
tion for weaker students, for example, may be different from missing information
for stronger students. Given that much information is typically available about
the participants in longitudinal design, this makes this kind of missing-data
modelling particularly useful for this research.

Another challenge that may prove difficult for longitudinal studies, especially
those over longer periods of time, is having appropriate measures of development
to capture both a wide range of individual differences at any particular wave of
measurement and also a great deal of the development from the first to the last
wave of measurement. Given that certain methods of analysis (especially growth-
curve modelling) require that the repeated measures be expressed on the same
scale, utilized measurement instruments need to be developed into several
different versions with different levels of difficulty that are vertically equated to
yield scores on the same scale. This can be accomplished with modern psycho-
metric methods (Item Response Theory – see Chapters 8 and 9), but it may
require great effort and careful planning when the study is designed.

Approaches to the design and analysis of
longitudinal studies

The design of longitudinal studies and the analyses of the data they yield are
two highly interrelated issues. It is therefore necessary to be aware of the restric-
tions on and the possibilities that are offered by different analytical approaches,
so that the study can be designed appropriately.
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There are a wide range of methods available to analyse longitudinal data,
which is partly due to the fact that longitudinal designs are used in a wide variety
of disciplines within both the natural and social sciences. This also has caused
a considerable confusion with respect to terminology, and different traditions
for analysing longitudinal data have evolved in different disciplines. These different
traditions and terminologies may at times also cause confusion, but advantages
may also be gained by profiting from the different experiences that have been
gained. The brief review of designs and analytical methods presented below
therefore covers approaches that have a background in educational research, as
well as approaches that are more frequently used in other disciplinary fields, such
as economics.

We consider five main approaches to analysing longitudinal data: fixed-effects
regression models, mixed-effects regression models, multilevel regression models,
growth models and structural models. These are briefly introduced below, and
their use is demonstrated through examples.

Fixed-effects regression

It has been realized for quite some time that many statistical techniques, such
as analysis of variance, SEM and multilevel analysis are applications of regression
analysis (Cohen et al. 2003) via the statistical ‘family’ that they belong to:
General Linear Models (GLMs). The linear additive model that regression analysis
is based upon is very versatile and the fixed-effects regression model for
longitudinal data is a demonstration of this.

Assume that we have a dependent variable (y) for a set of N individuals at T
occasions, along with a set of K independent variables (x). For individual i at
occasion t we denote the dependent variable observation yit and the observations
of the independent variables xit·1, . . . , xit·K. The fixed-effects regression model
then is:

yit = �i + �1xit·1, . . . , + �Kxit·K + �it (1)

In this model, � denotes the intercept, and � represents the effects of the
respective independent variables on y. The � coefficients represent fixed
population parameters that are the same for all individuals, and it is these that
are the parameters we are primarily interested in estimating and interpreting.

Model (1) thus looks like an ordinary regression model. However, there is a
subtle but very important difference, namely that the intercept parameter has
the index i (�i), which means that each individual has a different intercept. In
general we are not interested in interpreting these parameters, and they are often
referred to as nuisance parameters. However, these are necessary when accounting
for the often very substantial variability we find between individuals. Here, this
is done under the assumption that a fixed effect is associated with each individual
and is captured by �i.
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There is another difference between an ordinary regression model and the
model in (1), which is perhaps not immediately obvious. In an ordinary regression
analysis, the number of observations is N, but to estimate the parameters of
model (1) we use NT observations. Thus, for each individual, there are as many
observations as there are occasions of measurement.

Model (1) may be estimated in several different ways, but the most natural
approach within the regression framework is to estimate the fixed �i parameters
using a dummy variable approach. Let us illustrate this with the data on 22
countries participating in TIMSS 1995 and TIMSS 2003 analysed by Gustafsson
(2007), which was previously referred to. We first create a data set with 44 lines
by putting the TIMSS 2003 observations after the TIMSS 1995 observations.
The mathematics results for the two occasions are put in the same column (Math),
and we also put the mean age for the two occasions in the same column (Age).
We create one dummy variable (Time) representing occasion of measurement
(TIMSS 1995 = 0, TIMSS 2003 = 1) and 21 dummy variables representing
country. In the last step we perform the regression analysis using Math as the
dependent variable, and Age, Time and the 21 country dummies as independent
variables.

The regression analysis shows that the unstandardized regression coefficient
(�) for Age on Math is 37.8. Interestingly enough, this is exactly the same
estimate as was obtained when change in mathematics score was regressed on
change in age! This demonstrates that the interpretation of the fixed-effects
regression model specified above is to be made in terms of relations between
changes in independent and dependent variables. While this may not be imme-
diately obvious from (1) it follows from the fact that we allowed �i to capture
the variability among the units (that is, countries) and that the other part of the
model estimated the factors related to change between the two occasions.

It should be emphasized that even though the unstandardized regression
estimate for age that was obtained with the fixed-effects regression model is
identical to the unstandardized regression coefficient obtained when we regressed
change in mathematics score to change in age, the standardized regression
coefficients (�) are not identical. In the latter analysis the standardized co-
efficient was 0.58, while in the former analysis the partial standardized regression
coefficient was 0.30. This is because the variances of the independent and
dependent variables are different in the two models. The standardized coefficient
of 0.58 tells us that we can account for 33.6 per cent of the variance in change
over time for the 22 countries from the differences in mean age at the two
occasions of measurement. The standardized coefficient of 0.30 from the fixed-
effects regression model tells us that 9 per cent of the total amount of variance
between countries can be accounted for by the differences in mean age. Thus, these
estimates are not in contradiction; they just describe different aspects of the
empirical results.

As has already been mentioned, one of the main advantages of certain types
of longitudinal designs is that they control for the effects of omitted variables
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that are constant over time. The fixed-effects regression model enjoys this
property, and this is why we get a sensible estimate for the effects of age on
achievement with the specification used here (see Gustafsson 2007, for a more
extended discussion). The two cross-sectional estimates of the relations between
age and achievement that we can compute from these data (and which both are
close to zero) are, by contrast, influenced by correlations with omitted variables
and cannot therefore be interpreted. However, it must be emphasized that even
though the fixed-effects regression estimate is more interpretable, it is necessary
to be careful about causal inferences and these must be supported by strong,
substantive theory (see Chapter 3 for more on causality).

In the example above, the units were school systems, and it seems reasonable
to treat these units as a fixed set rather than as a random sample. However,
given the desirable properties of the fixed-effects regression model, it may be
asked what the limits are for its use. Even though we cannot give a general
answer to this question, there is much published research, particularly in the
economics of education literature, that makes extensive use of fixed-effects
regression specifications.

In one such study, Sund (2009) used a large longitudinal database of students
to investigate peer effects on student achievement in Swedish upper secondary
schools (that is, grades 10–12). There has been a considerable amount of research
on peer effects and quite a few studies have reported on their existence. However,
this is a controversial and difficult area of research and offers great challenges
in correctly estimating effects. In particular, the problem of selection bias is a
difficult one because there are many mechanisms that can cause positive selection
of students into classes and schools. Furthermore, teachers are also not randomly
allocated to classes and schools, which only increases this bias.

In order to control for these selection effects, Sund (2009) specified a fixed-
effects regression model that included fixed effects for students, teachers and
schools. This was possible because the database allowed the matching of teachers
and peers with every student for every course. The database included 82,896
students enrolled in upper secondary school between 1998 and 2004, 27 schools
and 4,181 classes. The main independent variable was the mean achievement
level of the classmates (with the standard deviation also being entered). Without
any controls, the value-added effect of the peer mean achievement level was
0.42, and when time, school and teacher effects were added the effect was
reduced to 0.32. Adding student fixed effects then reduced this to 0.16. These
decreases indicated that there was selectivity that would have caused bias if not
taken into account. However, the remaining effect was still highly significant,
and corresponded to an effect of 0.08 times the standard deviation for a 1
standard deviation increase in mean peer performance. There was also a significant
effect, although smaller, from the heterogeneity of the peer group. In further
analyses, Sund (2009) then showed that this peer effect was larger for those
students with a lower level of initial performance. This study demonstrates that
it is possible to estimate fixed-effects regression models for extremely large and
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complex longitudinal data sets, and it would seem that this kind of analytical
method could be taken advantage of in EER to a greater extent than has been
done so far.

Mixed-effects regression models

Even though the above-discussed Sund (2009) study demonstrates that it is
possible to apply the fixed-effects regression approach with a very large numbers
of observations, it is a tedious approach to estimate one intercept parameter for
each observation. Another approach is to consider the �i in (1) not as a set of
fixed parameters, but as a random variable with an assumed normal distribution
(we will refer to this random variable as �0i). The estimation problem then
becomes one of estimating the mean and standard deviation of this random
variable. This is a so-called random effect and if we assume that in accordance
with (1), we also want to estimate fixed effects for the independent variables,
then we have a so called mixed-effects model. When interpreted in this way, model
(1) is often referred to as a random intercepts model (model 2).

We may estimate this mixed-effects model for the same TIMSS data as were
used to illustrate the fixed-effects model through one of the many statistical
software packages that are available. Here we use the Mixed Models program
available in SPSS (statistical package for the social services) (Bickel 2007). We
use the same data arrangement as before, with 44 ‘cases’ and each country
appearing twice in the data file. Here, however, we do not identify the countries
with dummy variables, but with a unique identifier. We also enter two
independent variables into the model, namely Time and Age.

The estimated unstandardized regression coefficient for Age in this model
was 35.2 (t = 3.19, p < 0.004), and this estimate is slightly lower than obtained
in the fixed-effects model (37.8). For Time, the estimate was –7.08, which is
also close to that obtained in the fixed-effects model (–7.37).

Thus in this case, the fixed-effects and the mixed-effects models give quite
similar results, even though there are slight differences that raise the question,
are there any general principles that may be relied on for model choice? One
such principle is whether we regard our set of observations as a sample from 
a population or not. If we do, the random-effects model is a natural choice. In
this case, however, the countries cannot be regarded as a sample and so the
fixed-effects model is the most reasonable choice. Another principle is whether
we are interested in obtaining estimates for individual cases or not. If we are,
then again the fixed-effects model should be used.

Although the above example of a mixed-effects model is trivially simple,
exceedingly complex mixed-effects model can also be specified and this is
extremely useful given the great complexity of educational phenomena and
particularly when these are investigated longitudinally. McCaffrey et al. (2004)
proposed a multivariate, mixed-effects model for longitudinal student outcomes
designed to capture teacher and school effects. This is a general model of which
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several previously presented models may be regarded as special cases. The great
complexity of this model prevents us from presenting it in full detail, but it is
instructive to consider its basic structure.

The model considers results for students in schools in successive grades. Given
that the results achieved in one grade carry over to later grades (to a smaller or
larger extent) this must be reflected in the model. For grade 0 (that is, the first
grade considered) it is assumed that there are random school and teacher 
effects. The model also includes student characteristics that may be either fixed
(for example, gender, race) or time-varying (for example, special accommodations
at testing). Classroom-level characteristics may also be included.

For grade 1 and following grades, it is necessary to take into account the fact
that students change teachers and that students are not necessarily grouped
together in the same class. This is done through explicitly modelling the effects
of the previous grades, teachers and schools on current year scores using a cross-
classification model. Thus in this model, the influence of prior grade teachers
and schools on current results is estimated empirically, while in other models it
is often assumed that these effects persist (undiminished) over time. The model
can also be extended to deal with multiple subjects and multiple teachers within
each grade.

This model has many interesting characteristics and it clearly demonstrates
the complexities involved in modelling longitudinal data in school settings. The
estimated teacher and school effects are assumed to be interpretable as causal
contributions to student achievement, even though the grade 0 effects must be
interpreted cautiously because the model does not completely represent the
student’s history prior to the grade of testing.

McCaffrey et al. (2004) demonstrated that the model can be estimated on
empirical data of at least moderate size (678 students, five schools and three
grades) and also presented results estimated from simulated data. These results
indicated that the model yields reasonable results for teacher effects and that it
is reasonably robust to deviations from some of the model assumptions. However,
the results also indicated that the estimates of teacher effects are biased when
estimated from schools serving distinctly different student populations.

Multilevel regression models

As has been repeatedly emphasized, one of the fundamental characteristics of
education is that there are units at multiple levels of observation, such as students,
classrooms, schools and school systems. As is made clear in other chapters of
this volume (and in Chapter 11 in particular) special multilevel statistical models
have been developed to make it possible to deal with such hierarchical data.
This is true for longitudinal designs as well, and as we shall see below, such
designs generate a particular kind of multilevel data where observations at
different time points are nested under different individuals.
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There are two main reasons why hierarchical data require special statistical
techniques. One is that units that belong to a higher level unit (for example,
students within classrooms) tend to be more similar than randomly drawn units.
This violates the assumption of independently observed units that is made in
most statistical techniques, and if the intraclass correlation (a measure of the
amount of mean differences between the higher level units) is higher than 0.05,
a rule of thumb says that something needs to be done about the resulting 
bias. This bias does not generally pertain to the parameter estimates themselves,
but to the estimates of the degree of uncertainty of the parameter estimates
(that is, the standard errors). The bias always causes the standard errors to be
underestimated or (equivalently) the precision to be overestimated.

The other main reason why special techniques are required to deal with multi -
level data is that the substantively interesting variables are observed at different
hierarchical levels (for example, student achievement at the student level, teacher
experience at the teacher level, and instructional quality at the classroom level).
One way to investigate relations between variables observed at different levels is
to aggregate all the variables to the highest level of observation (for example, the
classroom or school-system level), but this typically entails loss of information
because variability between lower-level units is not taken into account. Another
way is to disaggregate all the variables to the lowest level of observation (for
example, the student level) but this causes the number of observations and the
statistical precision to be overestimated. Yet another way is to conduct a full-fledged
multilevel analysis, which involves estimation of mixed-effects regression models
of the kind introduced above.

Intuitively, a multilevel regression model may be thought of in the following
way (a more complete presentation is given in Chapter 11). Once a random
intercept of the kind defined in model (2) has been estimated, the �0i random
variable may be taken to be a dependent variable, the variation of which may
be accounted for in a regression model with one or more independent variables.
Suppose that we are investigating a set of schools and their students and that
we capture the variation in school means with �0i. We may then investigate how
much of the variation in �0i is accounted for by, for example, an aggregated
measure of school SES and a measure of school climate as estimated by the
principals. This model may then be fitted to data with general-purpose software
that estimates mixed-effects regression models or with special programs for
multilevel analysis (see Chapter 11). Such a model is sometimes referred to as
an ‘intercepts-as-outcomes’ model, and this is a simple multilevel model that
may be extended in many different ways.

Suppose then that within each of the schools, we regress student achievement
on student SES using a mixed-effects approach in which we capture the
distribution of within-school regression coefficients with a random variable (�1i).
Should the slope be shallow within some schools yet also steep within others
then this is an interesting phenomenon that indicates that schools vary in the
degree to which they support achievement for students with different SES. If
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we can then account for this variation with different school characteristics then
this would be even more interesting. We can investigate this issue if we extend
the multilevel model by also making �1i a dependent variable, and estimating
how much of the variation in the slopes can be accounted for by the two
independent variables: school-level SES and school climate. Such a model is
sometimes referred to as a ‘slopes-as-outcomes’ model.

The multilevel model may also be extended to encompass more than two
levels. One possibility is to add, below the student level, another level that
comprises observations at different time-points in a longitudinal design. We
discuss this extension at greater length below. Another possibility is to extend
the multilevel model by adding units at levels above the student, such as
classroom, school and municipality levels.

Having introduced the challenges created by hierarchically nested layers of
observation and multilevel modelling as a set of tools to meet these challenges,
it is interesting to consider the advantages and disadvantages of the fixed-effects
approach described above. One striking characteristic of the TIMSS example is
that the analysis was conducted at the highest level of aggregation possible,
namely the school-system level. As was pointed out above, aggregation may entail
loss of precision and there is also suspicion that aggregation may be a source of
bias. For example, Hanushek et al. (1996) observed that studies of effects 
of resources on student achievement tended to yield higher effect estimates when
conducted with highly aggregated data (for example, state level rather than
classroom level data). They argued that this is because aggregation magnifies
omitted variable bias, and that the results that are obtained with highly aggregated
data are therefore not to be trusted. However, it may also be observed that
many of the mechanisms that generate omitted-variable bias are operating at
lower levels within the school system. For example, compensatory resource
allocation (which is a major source of omitted variable bias) typically operates
at both the classroom and school levels (Lazear 2001). However, in data
aggregated to higher levels, such as the school district or school system, no
effects of the bias created by compensatory resource allocation at lower levels
are seen (Wößmann and West 2006). Thus, the question of whether aggregation
amplifies omitted variable bias or contributes to solving the aggregation bias
problem seems to be an open one in need of further research. However, what
is more important in this context is that with longitudinal designs, time-invariant
omitted variables do not cause any bias, and to obtain this advantage individual-
level longitudinal designs are not necessary. As has already been observed, many
of the international studies of educational achievement are longitudinal at the
school-system level, and within countries there are many data sets that are
longitudinal at the school or school-district level. These aggregated longitudinal
data sets form rich sources of information that are so far largely untapped by
EER (Kyriakides and Creemers 2009).

It is of course not necessary to limit the analysis to the aggregated level. Even
though a study may not be longitudinal at the individual, classroom or school
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level there may be reason to involve variables observed at these levels of
observation in order to increase power and to study interactive effects. When
this is done, the data will have a multilevel structure and it will be necessary to
take into account the clustered nature of the observations. One way to do this
is to use multilevel modelling and estimate full-fledged mixed-effects models. It
is thus possible to extend the fixed-effects model (1) with data from students
in schools and estimate a mixed-effects model. However, such models may be
unnecessarily complex and, as was pointed out above, clustered data generally
biases standard errors rather than parameter estimates themselves. In cases when
we are not interested in micro-level relations, there is also an alternative approach
to correct the standard errors for the underestimation caused by the clustering
of data, namely to use what is called by programs ‘clustering robust standard
errors’. For example, this option is offered for the ordinary regression command
in Stata and causes the clustering of the data to be taken into account when
computing the standard errors.

Growth models

One approach to the analysis of longitudinal data that has gained much attention
during the last couple of decades is growth curve modelling. This is partly due
to the fact that over time, methods suitable for dealing with individual change,
such as multilevel analysis, have increasingly become available. Another reason
for this growing interest is that it has been realized that traditional methods for
dealing with longitudinal data suffer from both conceptual and statistical
limitations.

Growth modelling is fundamentally based on the idea of analysing change
over time. However, one of the reasons that there was reluctance to adopt such
approaches in educational and psychological research was that measures of change
over time were viewed with suspicion. Much research had a focus on two waves
of measurement, and within such designs a difference score was simply computed
to measure this change. However, difference scores are also seen as problematic
for psychometric reasons. For example, Cronbach and Furby (1970) argued in
a classic paper that residual gain scores could be estimated, but that generally
researchers are better advised to reformulate the research question so as to avoid
change measures.

One of the problems with change scores is that they often have a low reliability.
The reliability of difference scores are low when the correlation between the two
waves is high, and vice versa. One problem with a low correlation between two
waves of measurement is that this may indicate that the same construct is not
measured. The problem with the reliability being inversely related to the amount
of between-wave correlation is sometimes seen as a conflict between validity and
reliability. However, Rogosa et al. (1982) noted that the correlation coefficient
is a measure that expresses constancy of rank-ordering of individual differences
and that it need not be relevant in the study of change. Thus, whether the
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variable being studied retains its meaning over time cannot be resolved by the
value of the correlation between the two measures alone.

However, a main point made by Rogosa et al. (1982) was that to study change
over time with precision, we need more than two time points and we need to
analyse change within the framework of explicit models. They therefore proposed
that a growth curve approach should be adopted to analyse change over time.
Since this plea was made there has since been a virtual explosion of longitudinal
research using such approaches, along with the development of analytic
techniques and tools (Muthén 1997; Raudenbush and Bryk 2002; Singer and
Willett 2003).

One frequently used approach to growth modelling is multilevel analysis.
Suppose that we have administered an instrument measuring achievement at
four different occasions one year apart to a group of persons. We may represent
these data in such a way that for each individual, we plot the score for each of
the four waves in a scatter diagram. In a further step we may (for each individual)
compute a linear regression of achievement on wave of measurement (or time)
to obtain one intercept parameter representing initial achievement and one slope
parameter representing change over time. Thus, in this approach, we explicitly
involve time as a variable in the analysis, and through using data from multiple
waves of measurement, we can achieve a higher degree of stability in the
parameter estimates than if we had used a simple difference score. We can also
improve estimation by relying on data for all persons and use a mixed-effects
model to estimate the mean and variance of the distributions of the parameters
of the regression model rather then estimate the regression models individually.
This means that we are adopting a multilevel approach where the individuals
are at level two and the observations at the different time-points are at level
one. This model can then be extended in many different ways, such as by adding
level two variables representing antecedents and consequences of growth, and
by adding further levels (for example, classrooms, schools, school district). If
there are more than three waves of measurement, we may also consider using
models other than the linear model for representing change over time, such as
different kinds of curvilinear trends and functions.

One example of a multilevel growth model is de Fraine et al. (2005) who
fitted several different models to a large longitudinal data set in which the
development of well-being in school was investigated from grade 1 in secondary
school (age 12) to grade 6. There were four occasions of measurement (grades
1, 2, 4 and 6) and the study included only those students who remained in 
the same school throughout the study. The sample originally comprised 3,788
students in 53 schools. Of these, 54 per cent participated at all four occasions,
while the other students participated at one, two or three. However, the analysis
included all students in the sample because the authors took advantage of the
missing-data modelling capability of the multilevel model. In their investigation,
several different models were fitted and were of two main types. One type was
the growth approach, where different trajectories over time for the students were
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modelled. The other type was a fixed-effects approach, in which the different
time-points were represented with dummy variables and in which there were
random effects for students and schools. This approach, which was referred to
as the ‘multivariate approach’, imposes no restrictions on the pattern of change
over time for the students. We will here focus on the growth-model approach.

The favoured growth model was a three-level model. At the first level students’
well-being was described as a quadratic function of time. By comparison, the
second level described the variability in the individual growth curves, while 
the third level described differences between schools.

The fixed part of the model described the average growth trajectory by means
of three parameters: the average intercept (�0), the average linear growth
parameter (�1) and the average quadratic growth parameter (�2). The trajectory
of each individual was described by three parameters: a student-specific intercept
(�0i), a student-specific linear growth parameter (�1i) and a student-specific
quadratic growth parameter (�2i). In addition, the model comprised student-
specific residuals that were assumed to be generated by a trivariate normal
distribution with an unrestricted covariance matrix.

The average growth curve indicated a continuous decline in the well-being
of students from grade 1 to grade 6 but with a diminishing rate over time.
However, the results also showed that there were large individual differences in
both initial level of well-being and in the trajectories over time. Thus, for a
majority of the students the growth trajectory had a linear decline, but some
trajectories were characterized by a linear increase in well-being. Assessment of
the fit of the quadratic growth curve model for individual students showed that
it fitted well in many cases, but there were also students for whom the model
did not seem to fit well at all. However, the limited number of observations for
each student made it difficult to assess individual level fit. When the quadratic
model was tested against the unrestricted model, it was also found to fit somewhat
more poorly.

The amount of school variance for the intercept parameter was significant,
but the parameter estimate was small, indicating that there was a small influence
of school on student well-being. The parameter estimates for the linear and
quadratic components at the school level were also small.

The model could have been extended with student-level characteristics
specified as independent variables to account for the variation in student
trajectories over time, but this was not a purpose of the study. Where differences
in growth patterns are of interest as independent variables to account for other
outcomes, it is also easy to envision research problems. However, the standard
multilevel algorithms do not allow specification of growth models where
parameters are used as independent variables.

Another way to estimate growth models is to set the model up as a latent
growth model within the framework of SEM (Gustafsson 2004; Muthén 1997;
Willett and Sayer 1994). With this approach, the problem is regarded as a
multivariate problem, and the vector of observations from different points in
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time is modelled by specifying relations with latent variables that express
intercepts, linear components, quadratic components and so on. These latent
variables may be described as ‘container’ variables, which express characteristics
of the random coefficients through their mean and variance. The SEM approach
brings several advantages to growth modelling. One advantage is that it is
possible to take advantage of the full range of SEM techniques for estimating
models and evaluating their fit. Another advantage is that the SEM approach is
very flexible and allows models to be specified where variables are both dependent
and independent variables at the same time. This makes it possible to use latent
variables that are part of the growth model both as independent and dependent
variables in relation to other variables.

One example comes from Bub et al. (2007) who investigated change in
internalizing and externalizing behaviour problems from 24 months of age to
school start at age six and studied relations between the trajectories of behaviour
problems and cognitive variables in grade 1. The original sample consisted of
1,364 children and families, and of these, 882 children had complete data. The
analysis was restricted to the latter group even though it would have been
possible to include all cases through using the missing data techniques imple-
mented in current SEM programs (such as Amos, LISREL and Mplus). The
children were assessed at five different time points, with scales capturing
internalizing and externalizing behaviour problems, and in grade 1 tests were
administered measuring cognitive abilities and school achievement. Linear growth
models were fitted separately to the scales measuring internalizing and exter-
nalizing behaviour problems, and the intercept and slope parameters of these
models were related to cognitive ability and achievement in grade 1. The intercept
parameters for internalizing and externalizing behaviour problems were both
significantly negatively related to the level of cognitive performance in grade 1.
In contrast, the slope parameter for internalizing problems was related to
cognitive performance showing that children with increases in the amount of
behaviour problems between 24 months and grade 1 had lower cognitive abilities
in grade 1.

Structural models

In the example presented above, SEM was used to estimate a growth model,
and it is easily demonstrated that when these can be estimated by software both
for multilevel regression analysis and for SEM, identical results are achieved (de
Fraine et al. 2007). However, these two approaches also have their unique
advantages. For example, with multilevel regression it is, in principle at least,
possible to specify models with an unlimited number of levels, and it also is
possible to set up so called cross-classified models that take into account changing
group membership over time. In comparison, SEM allows models in which
variables have the double role of being both dependent and independent variables,
which makes it possible to set up chains of variables influencing each other in

94 Different methodological orientations



direct and indirect fashions (allowing for tests of hypotheses of mediation). Such
models must be formulated on the basis of substantive theory, previous results
and knowledge about the nature of the empirical data. In this context,
longitudinal data is also a great asset because knowledge about the time ordering
of variables is important in specifying directions of influence among variables.
Another great advantage of SEM is that multiple fallible observed variables may
be used as indicators of a limited set of latent variables, which allows for a
parsimonious analysis of variables that are typically closer to the theoretical
constructs under investigation than are the observed variables.

As has already been observed, SEM may be used to estimate growth models
and several other types of models for investigating change over time (see Chapter
12 for an extended presentation). However, there are also other SEM models
that have classically been used to analyse longitudinal data. The most important
among these are different kinds of autoregressive models in which a variable is
regressed upon an earlier measurement of itself. For example, suppose that we
have measured achievement at four different time points (y1, . . . , y4). Such a
univariate series of repeated measures often results in what is called a simplex
model (Jöreskog 1970). Simplex models can easily be estimated, and under
certain assumptions it also is possible to estimate the amount of error variance
in each of the measures (see Figure 5.1).

A bivariate series of repeated measures typically requires a model with both
autoregressive and cross-lagged relations, as shown in Figure 5.2.

Longitudinal design  95

y2y1ρ

y2x1ρ

x2y1ρ

y1

y3y2ρ
y2

y4y3ρ
y3 y4

x2x1ρx1
x3x2ρx2

x4x3ρx3 x4

y3x2ρ

x3y2ρ

y4x3ρ

x4y3ρ

Figure 5.2 An autoregressive and cross lagged model for bivariate measures

y4

43ρ
y3

32ρ
y2

21ρ
y1

Figure 5.1 An autoregressive model for repeated measures



Such cross-lagged panel models have attracted quite a lot of attention in
research aiming to determine the relative importance of mutually influencing
factors. For example, it has been shown that school achievement influences
academic self-concept positively and vice versa. These results provide the basis
for what has been called the ‘reciprocal effects model’, which argues that two
factors are reciprocally related and mutually reinforcing (Marsh et al. 2002).
Attempts also have been made to determine if either of the two directions of
influence is stronger than the other, but no consistent results have been found.

However useful the models, SEM has also faced criticism. For example, the
autoregressive approach has been criticized in comparison with growth curve
approaches (Rogosa and Willett 1985) where it has been observed that the model
focuses on variances and covariances, while means are typically not included.
Another criticism is that even though multiple waves of measurement may be
dealt with, the autoregressive model basically focuses on change between any
two points in time. Yet another problem is that change that does not affect rank
ordering of individuals can typically not be captured with the autoregressive
approach.

However, in spite of these criticisms it may be noted that there are many
longitudinal research problems for which the autoregressive approach is well
suited, and the growth curve and autoregressive approaches may be regarded as
complementary rather than conflicting (Bollen and Curran 2004). One example
of an interesting application of the autoregressive approach is in a study by Francis
et al. (1989), the aim of which was to investigate changes in the relationship of
verbal and non-verbal skills to reading ability in kindergarten, second grade and
fifth grade. The subjects were 220 boys who at the three occasions were given
a battery of tests designed to measure verbal and non-verbal abilities, while at
second and fifth grades reading achievement was also measured. An autoregressive
model was then fitted to these data, as shown in Figure 5.3.

At each of the three occasions, latent variables representing non-verbal (NV)
abilities and verbal (VS) abilities were specified from three indicators. The
autoregressive relations over time for these abilities were close to 0.90 for NV
and higher than 0.95 for VS. The kindergarten measures of VS and NV both
predicted second grade reading achievement, VS being the somewhat stronger
predictor. However, fifth grade reading achievement was only predicted by
second grade reading achievement and VS, there being no relation to NV. Thus,
these patterns of relations gave evidence of important changes over time in the
roles of verbal and non-verbal abilities in the development of early reading skills.

In combining the approaches of SEM and multilevel modelling, it must be
noted that traditionally SEM has assumed independently sampled observations
and so the basic model is not appropriate for dealing with multilevel data.
However, Muthén (1989, 1997) has extended the basic model into a two-level
model, which can analyse variability between groups in one model and variability
among individuals within groups in another model. This is done through
decomposing the total covariance matrix into one between-level and one 
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within-level matrix to which the between- and the within-level models are
simultaneously fitted.

We present here a study using two-level SEM to investigate effects of teacher
content knowledge (CK) and pedagogical content knowledge (PCK) in math -
ematics on quality of teaching and student progress (Baumert et al. in press).
This study is based on previous work designed to conceptualize and measure
the CK and PCK dimensions by Krauss et al. (2008). CK was conceptualized
as a profound mathematical understanding of the curricular content to be taught,
while PCK was defined as comprising three different dimensions:

• knowledge of mathematical tasks as instructional tools;
• knowledge of students’ thinking and assessment of understanding;
• knowledge of multiple representations and explanations of mathematical

problems.

Confirmatory Factor Analysis (CFA) showed the CK and PCK dimensions to
be empirically separable, even though they were highly correlated.

This empirical study was conducted as an extension of the German part of
the 2003 PISA study, which transformed the cross-sectional design into a
longitudinal design spanning a one-year period. At the end of the ninth and
tenth grades, students in the PISA classes were administered achievement tests
as well as questionnaires assessing background data and aspects of their mathe-
matics instruction. Among other things, the mathematics teachers of the classes
were administered tests designed to measure CK and PCK. A total of 181
teachers with 194 classes and 4,353 students participated in the longitudinal
study.

In order to assess the quality of instruction, the tests and examinations the
teachers had set in the school year were coded for cognitive demands and
curricular level. The students were also asked to rate the amount of individual
learning support on six different scales. Both students and teachers also were
asked to rate the degree of effectiveness of classroom instruction.

The two-level latent variable model was mainly focused on the class level.
The model controlled for selective intake to the classes, with ninth grade
achievement being measured and the influence of teachers’ CK and PCK on
learning outcomes at the class level in the tenth grade being investigated.
Furthermore, models were fitted to investigate the extent to which CK and PCK
effects were mediated by the instructional quality variables.

The results showed that both teacher CK and PCK influenced the class-level
mathematical progress but that the effect of PCK was stronger than the effect
of CK. The mediation models also showed that the PCK effect came about
because PCK influenced the level of cognitive activation, the instructional
alignment with the curriculum and the individual learning support. By contrast,
the mediation model did not apply to CK. However, Baumert et al. (in press)
argued that these results should not be interpreted as showing that CK is

98 Different methodological orientations



unimportant or that lack of CK can be compensated for by an increased emphasis
on PCK in teacher training. Instead, they concluded that CK may be regarded
as a necessary but not sufficient condition for development of PCK.

Conclusions

As is described in Chapters 1 and 2, EER is currently in a phase in which the
development of theoretical models aiming to explain the intricate relations among
different levels and components of the educational system has a high level of
priority. This cannot be completed unless the dynamic and changing nature 
of educational phenomena are adequately captured, and it also requires insight 
into the fundamental causal mechanisms of educational systems. In turn, this
makes it necessary to adopt longitudinal research as one of the main approaches
in EER.

As we have seen in this chapter, there are a wide variety of designs that may
be regarded as belonging to the longitudinal category, including designs in which
schools and educational systems are followed over time rather than individual
students. Given that there are large numbers of high-quality databases with such
information and that have often been created for administrative purposes rather
than for the purposes of research, these may prove to be a valuable asset for the
field of EER. It is, however, a great challenge to analyse such data in such a
way that the relationships are properly teased out. Several of the examples
presented in this chapter have, however, demonstrated that this can be done.

Not only are existing databases an important source of information, but
research studies designed to provide knowledge about different research problems
are even more important. Even though the challenges involved in conducting
longitudinal research are typically greater than those involved in conducting cross-
sectional research, it would seem that the amount and quality of information
that may be obtained with the longitudinal designs makes the extra effort
worthwhile. The insights into how longitudinal studies should be designed to
provide maximum information have also increased as a function of the increasing
sophistication in analysing longitudinal data. Of particular importance in this
context is the recognition that development over time should be analysed with
explicit models and that observations at several time points is often needed to
get sufficient information about the patterns of change.

References
Antoniou, P. (2009) ‘Using the dynamic model of educational effectiveness to improve

teaching practice: Building an evaluation model to test the impact of teacher professional
development programs’, unpublished doctoral dissertation, University of Cyprus, Cyprus.

Baumert, J., Kunter, M., Blum, W., Brunner, M., Dubberke, T., Jordan, A., Klusman,
U., Krauss, S., Neubrand, M. and Tsai, Y-M. (in press) ‘Teachers’ mathematical
knowledge, cognitive activation in the classroom, and student progress’, American
Educational Research Journal.

Longitudinal design  99



Beaton, A.E., Mullis, I.V.S., Martin, M.O., Gonzalez, E.J., Kelly, D.L. and Smith, T.A.
(1996) Mathematics achievement in the middle school years: IEA’s Third International
Mathematics and Science Study, Chestnut Hill, MA: Boston College, TIMSS Inter-
national Study Centre.

Bickel, J. (2007) Multilevel analysis for applied research: It’s just regression!, New York:
The Guildford Press.

Bollen, K.A. and Curran, P.J. (2004) ‘Autoregressive Latent Trajectory (ALT) models:
A synthesis of two traditions’, Sociological Methods and Research, 32(3): 336–83.

Bub, K.L., McCartney, K. and Willett, J.B. (2007) ‘Behavior problem trajectories and
first grade cognitive ability and achievement skills: A latent growth curve analysis’,
Journal of Educational Psychology, 99: 653–70.

Cohen, J., Cohen, P., West, S.G. and Aiken, L.S. (2003) Applied multiple regression/
correlation analysis for the behavioral sciences, 3rd edn, Mahwah, NJ: Lawrence Erlbaum
Associates.

Cronbach, L.J. and Furby, L. (1970) ‘How should we measure “change” – or should
we?’, Psychological Bulletin, 74: 68–80.

de Fraine, B., van Landeghem, G., Van Damme, J. and Onghena, P. (2005) ‘An analysis
of well-being in secondary school with multilevel growth curve models and multilevel
multivariate models’, Quality and Quantity, 39(3): 297–316.

de Fraine, B., Van Damme, J. and Onghena, P. (2007) ‘A longitudinal analysis of gender
differences in academic self–concept and language achievement: A multivariate multilevel
latent growth approach’, Contemporary Educational Psychology, 32(1): 132–50.

Demetriou, D. (2009) ‘Using the dynamic model to improve educational practice’,
unpublished doctoral dissertation, University of Cyprus, Cyprus.

Francis, D.J., Fletcher, J.M., Maxwell, S.E. and Satz, P. (1989) ‘A structural model for
developmental changes in the determinants of reading achievement’, Journal of Clinical
Child Psychology, 18(1): 44–51.

Gustafsson, J.-E. (2004) ‘Modelling individual differences in change through latent 
variable growth and mixture growth modelling: Basic principles and empirical examples’,
in A. Demetriou and A. Raftopolous (eds) Emergence and transformations in the mind,
New York: Cambridge University Press, pp. 379–402.

Gustafsson, J.-E. (2007) ‘Understanding causal influences on educational achievement
through analysis of differences over time within countries’, in T. Loveless (ed.) Lessons
learned: What international assessments tell us about math achievement, Washington,
DC: The Brookings Institution, pp. 37–63.

Hanushek, E.A., Rivkin, S.G. and Taylor, L.L. (1996) ‘Aggregation and the estimated
effects of school resources’, The Review of Economics and Statistics, 78(4): 611–27.

Jöreskog, K.G. (1970) ‘Estimation and testing of simplex models’, British Journal of
Mathematical and Statistical Psychology, 23: 121–45.

Keeves, J. (1988) ‘Longitudinal designs’, in J. Keeves (ed.) Educational research, method -
ology and measurement: An international handbook, Oxford: Pergamon Press.

Krauss, S., Brunner, M., Kunter, M., Baumert, Blum, W., Neubrand, M. and Jordan, A.
(2008) ‘Pedagogical content knowledge and content knowledge of secondary
mathematics teachers’, Journal of Educational Psychology, 100(3): 716–25.

Kyriakides, L. and Creemers, B.P.M. (2009) ‘Explaining stability and changes in schools:
A follow-up study testing the validity of the dynamic model’, paper presented at the
EARLI Conference, Amsterdam.

100 Different methodological orientations



Lazear, E.P. (2001) ‘Educational production’, Quarterly Journal of Economics, 116(3):
777–803.

Marsh, H.W., Kong, C.K. and Hau, K.T. (2002) ‘Multilevel causal ordering of academic
self-concept and achievement: Influence of language of instruction (English vs. Chinese)
for Hong Kong students’, American Educational Research Journal, 39: 727–63.

McCaffrey, D.F., Lockwood, J.R., Koretz, D.M., Louis, T.A. and Hamilton, L. (2004)
‘Models for value-added modelling of teacher effects’, Journal of Educational and
Behavioral Statistics, 29(1): 67–101.

Mullis, I., Campbell, J. and Farstrup, A. (1993) NAEP 1992 Reading Report Card for
the Nation and the States, Washington, DC: National Centre for Education Statistics.

Muthén, B. (1989) ‘Latent variable modelling in heterogeneous populations’, Psycho -
metrika, 54: 557–85.

Muthén, B. (1997) ‘Latent variable modelling with longitudinal and multilevel data’, in
Raftery (ed.) Sociological methodology, Boston: Blackwell Publishers, pp. 453–80.

OECD (2008) Measuring improvements in learning outcomes: Best practices to assess the
value-added by schools, Paris: OECD publishing.

Raudenbush, S.W. and Bryk, A.S. (2002) Hierarchical linear models: Applications and
data analysis methods, 2nd edn, Newbury Park, CA: Sage Publications.

Rogosa, D.R., Brandt, D. and Zimowski, M. (1982) ‘A growth curve approach to the
measurement of change’, Psychological Bulletin, 92(3): 726–48.

Rogosa, D. and Willett, J.B. (1985) ‘Satisfying a simplex structure is simpler than it should
be’, Journal of Educational and Behavioral Statistics, 10(2): 99–107.

Schafer, J.L. and Graham, J.W. (2002) ‘Missing data: Our view of the state of the art’,
Psychological Methods, 7(2): 147–77.

Singer, J.D. and Willett, J.B. (2003) Applied longitudinal data analysis: Modeling change
and event occurrence, New York: Oxford University Press.

Sund, K. (2009) ‘Estimating peer effects in Swedish high school using school, teacher,
and student fixed effects’, Economics of Education Review, 28: 329–36.

Willett, J.B. and Sayer, A.G. (1994) ‘Using covariance structure analysis to detect correlates
and predictors of change’, Psychological Bulletin, 116: 363–81.

Wößmann, L. and West, M. (2006) ‘Class-size effects in school systems around the world:
Evidence from between-grade variation in TIMSS’, European Economic Review, 50(3):
695–736.

Longitudinal design  101



Experimental studies in
education

Robert E. Slavin
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Throughout the twentieth century, in fields such as medicine, agriculture, trans-
portation and technology, processes of development, rigorous evaluation and
dissemination have produced a pace of innovation and improvement that is
unprecedented in history (Shavelson and Towne 2002). These innovations have
transformed the world. Yet education has failed to embrace this dynamic, and
as a result, education moves from fad to fad. Educational practice does change
over time, but the change process more resembles the pendulum swings of taste
characteristic of art or fashion rather than the progressive improvements charac-
teristic of science and technology (Slavin 1989, 2003).

At the dawn of the twenty-first century, education is finally being dragged
into the twentieth century. The scientific revolution that utterly transformed
medicine, agriculture, transportation, technology and other fields early in the
twentieth century almost completely bypassed the field of education. It is not
that we have not learned anything about effective education. It is rather that
applications of the findings of educational research, and especially of EER, remain
haphazard, and that evidence is respected only occasionally, and only if it happens
to correspond to current educational or political fashions.

Early in the twentieth century, the practice of medicine was at a similar point.
For example, research had long since identified the importance of bacteria in
disease, and by 1865 Joseph Lister had demonstrated the effectiveness of anti -
septic procedures in surgery. In the 1890s, William Halsted at Johns Hopkins
University introduced rubber gloves, gauze masks and steam sterilization of
surgical instruments, and demonstrated the effectiveness of these procedures.
Yet it took thirty years to convince tradition-bound physicians to use sterile
procedures. If he dropped his scalpel, a physician in 1910 was as likely as not
to give it a quick wipe and carry on.

Today, of course, the linkage between research and practice in medicine is
so tight that no physician would dream of ignoring the findings of rigorous
research. Because medical practice is so closely based on medical research, funding
for medical research is vast, and advances in medicine take place at breathtaking
speed.

Chapter 6



The most important reason for the extraordinary advances in medicine,
agriculture and other fields is the acceptance by practitioners of evidence as the
basis for practice. In particular, it is the randomized clinical trial more than any
single medical breakthrough that has transformed medicine (Doll 1998). In a
randomized clinical trial, patients are assigned at random to receive one treatment
or another, such as a drug or a placebo. Because of random assignment, it can
be assumed with an adequate number of subjects that any differences seen in
outcomes are due to the treatment, not to any extraneous factors (see Chapter
3 for more on the establishment of causality). Replicated experiments of this
kind can establish beyond any reasonable doubt the effectiveness (or lack thereof)
of treatments intended for applied use (Boruch 1997).

Experiments in education

In education, experiments are not uncommon, but they are usually brief, artificial
experiments on topics of theoretical more than practical interest, often involving
hapless college sophomores. Far rarer are experiments evaluating treatments of
practical interest studied over a full school year or more. I write an educational
psychology textbook (Slavin 2009) that is full of research findings of all kinds,
findings that are valuable in advancing theory and potentially valuable to teachers
in understanding their craft. Yet the brief experiments, correlational studies and
descriptive studies that yield most of the information presented in any educational
psychology text do not collectively add up to school reform. They are suggestions
about how to think about daily teaching problems, not guides to the larger
questions educators and policymakers must answer. Imagine that research in
cardiology described heart function and carried out small-scale laboratory studies,
but never developed and tested an artificial heart valve. Imagine that agricultural
research studied plant growth and diseases, but never developed and tested new
disease-resistant crops. Educational research has produced many rigorous and
meaningful studies of basic principles of practice, but few rigorous studies of
programmes and practices that could serve as a solid base for policy and practice,
and has had little respect for the studies of this kind that do exist. Because of
this, policymakers have rarely seen the relevance of research to the decisions they
have to make and therefore have provided minimal funding for research. This
has led to a declining spiral, as inadequate investments in research lead to a
dearth of the kind of large-scale, definitive research that policymakers would feel
to be valuable, making these policymakers unwilling to invest in large-scale,
definitive research.

Shifting policy perspectives

Changes in federal education policies in the United States could potentially
reverse this declining spiral. New funding is flowing into experimental research.
If this produces some notable successes, we could have an ascending spiral:
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rigorous research demonstrating positive effects of replicable programmes 
on important student outcomes would lead to increasing funding for such
research, which could then lead to more and better research and therefore more
funding. More importantly, millions of children would benefit. Once we establish
replicable paradigms for development, rigorous evaluation, replication and
dissemination, these mechanisms could be applied to any educational intervention
or policy. Imagine that there were initiatives under way all the time to develop,
evaluate and disseminate new programmes in every subject and every grade level,
as well as programmes on school-to-work transitions, special education, gifted
programmes, dropout prevention, programmes for English language learners,
race-relations programmes, drug abuse prevention, violence prevention and so
on. Every one of these areas lends itself to a development–evaluation–dissemina-
tion paradigm, as would many more. Over time, each area would likely experience
the step-by-step, irreversible progress characteristic of medicine and agriculture,
because innovations would be held to strict standards of evaluation before being
recommended for wide scale use.

Research designs

The scientific revolution in education will only take hold and produce its desired
effects if research in fact begins to focus on replicable programmes and practices
central to education policy and teaching, and if it in fact employs research
methods that meet the highest standards of rigour.

This begs an important question: what kinds of research are necessary to
produce findings of sufficient rigour to justify faith in the meaning of their
outcomes?

Of course, all sorts of research designs are appropriate for various purposes,
from description to theory building to hypothesis testing. However, many
educational researchers throughout the world (Angrist 2004) have been arguing
that nothing less than randomized experiments will do for evaluations of
educational interventions and policies. When we want to know the outcome 
of choosing programme X instead of programme Y, there is no substitute for a
randomized experiment.

Randomized experiments

The difference in the value of randomized and well-matched experiments relates
primarily to the problem of selection bias. In a matched experiment, it is always
possible that observed differences are due not to treatments, but to the fact that
one set of schools or teachers was willing to implement a given treatment while
another was not, or that a given set of students selected themselves or were
selected into a given treatment while others were not (see also Chapter 3).

When selection bias is a possibility at the student level, there are few if any
alternatives to random assignment, because unmeasured (often, unmeasurable)
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pre-existing differences are highly likely to be alternative explanations for 
study findings. For example, consider studies of after-school or summer-school
programmes. If a researcher simply compared students attending such pro-
grammes to those not attending who were similar in pre-test scores or
demographic factors, it is very likely that unmeasured factors such as student
motivation, parental support for education or other consequential factors could
explain any gains observed, because the more motivated children are more likely
to show up. Similarly, studies comparing children assigned to gifted or special
education programmes to students with similar pre-test scores are likely to miss
key selection factors that were known to whoever assigned the students but not
measured. If one child with an IQ of 130 is assigned to a gifted programme
and another with the same IQ is not, it is likely that the children differ in
motivation, conscientiousness or other factors. In these kinds of situations, use
of random assignment from within a selected pool is essential.

In contrast, there are situations in which it is teachers or schools or local
educational authorities that elect to implement a given treatment, but there is
no selection bias that relates to the children. For example, a researcher might
want to compare the achievement gains of children in classes using co-operative
learning, or schools using comprehensive reform models, to the gains made by
control groups. In such cases, random assignment of willing teachers or schools
is still far preferable to matching, as matching leaves open the possibility that
volunteer teachers or staffs are better than non-volunteers. However, the likely
bias is much less than in the case of student self-selection. Aggregate pre-test
scores in an entire school, for example, would indicate how effective the current
staff has been up to the present, so controlling for pre-tests in matched studies
of existing schools or classes controls out much of the potential impact of having
more willing teachers.

In practice, it is the case that in a wide range of educational experiments,
effect sizes for randomized experiments are very similar to those for large, well-
matched quasi-experiments (Slavin and Smith 2008; Cook et al. 2008).
Random ized experiments are still preferable, but it is important to be aware that
other alternatives can produce similar findings.

The importance of this discussion lies in the fact that randomized experiments
of interventions applied to entire classrooms can be difficult and expensive to do,
and are sometimes impossible. Sometimes a randomized experiment is no more
difficult than a matched one, but in many cases the cost of doing one random ized
study can be two or three times that of an equally large-scale matched study. It is
at least arguable that replicated matched studies, done by different investigators
in different places, might produce more valid and meaning ful results than one
definitive, once-in-a-lifetime randomized study.

In Chapter 3, various difficulties of conducting randomized experiments 
were discussed. However, it is advocated that in most areas of policy-relevant
programme evaluation, and whenever they are possible, randomized experiments

Experimental studies in education  105



should be used. Beyond the benefits for reducing selection bias, there is an
important political reason to prefer randomized over matched studies at this
point in history. Because of political developments in the US, we have an oppor -
tunity to reverse the ‘awful reputation’ that educational research has among
policymakers (Kaestle 1993; Lagemann 2002). Over the longer run, I believe
that a mix of randomized and rigorous matched experiments evaluating educa -
tional interventions may be healthier than a steady diet of randomized
experiments, but right now we need to establish the highest possible standard
of evidence – on a par with standards in other fields – to demonstrate what
educational effectiveness research can accomplish.

Is random assignment feasible in Educational Effectiveness
Research?

Having said that randomized designs are desirable, are they feasible? The fact
is, educators, parents and students hate to be assigned at random. It goes against
human nature. Therefore, incentives are usually needed. Randomized experiments
can only be used when a treatment can be assigned to schools, teachers or
students who have not had it before, so treatments in randomized studies are
always in their first year, a serious problem if the treatments are difficult to
implement or take time to work. Further, education has one characteristic that
makes random assignment very difficult: students are usually taught in groups.
Unlike other human service fields, such as medicine, social services and clinical
psychology, education takes place in schools to which it is rarely possible to
randomly assign children.

In designing randomized experiments, there are several characteristics of
samples, treatments and theories of action that facilitate or rule out particular
designs. In particular, answers to the following seven key desiderata largely
determine what design to choose (or whether randomization is practical at all):

1 WHAT IS THE UNIT OF INTERVENTION?

The unit of intervention is a major factor in research design. For statistical
analysis, a rule of thumb might be that with a good pre-test, a sample size of
about 100 experimental and 100 control children is necessary to find a significant
difference with an effect size of 0.20 (20 per cent of a standard deviation), often
thought of as the lower bound for educational significance. Because aggregate
scores are more stable than individual ones, a sample size of, say, 25 experimental
and 25 control schools or classrooms might be needed to find the same effect
size. However, it is usually far easier to find 200 children than to find 50 schools
or classrooms (50 schools might involve 25,000 to 100,000 children!). For this
reason, a randomized study of one-to-one tutoring, after-school programmes or
gifted programmes, in which children can (in principle) be assigned one at a
time to one treatment or another, may be much easier to do than one in which
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the classroom or teacher is the unit of intervention, or (worse yet) where the
school is the unit of intervention.

Implied in this discussion is the important principle that the level of random
assignment should dictate the level of analysis. The principle is frequently violated
and is in fact more important in some circumstances than in others, but clearly
a study in which, say, just one school is ‘randomly’ assigned to treatment A
while another is randomly assigned to treatment B cannot be considered a valid
randomized experiment, because treatment would be completely confounded
with characteristics of the schools.

2 HOW LONG IS THE INTERVENTION?

If a planned intervention is expected to show its effects in one academic year
or less, a powerful design element can be introduced: a delayed treatment control.
That is, a group of students, teachers or schools might be invited to implement
a given treatment, with an understanding that they have a 50–50 chance of
receiving the treatment now or (say) in the next school year. The next-year
group serves as a control group this year. There are two major advantages to
this. First, all participants are equally (and positively) motivated to participate.
The only necessary ‘incentive’ is the treatment itself. Further, the control group
is likely to be motivated to participate in testing and to have a stake in the entire
process. Also, sometimes it is possible to have the delayed treatment group, in
the year it receives the treatment, serve as an experimental group in a matched
(non-randomized) experiment.

However, some treatments only make sense over multiple years, and few
participants would be willing to wait that long for their delayed treatment.

3 IS THERE EXCESS DEMAND FOR THE INTERVENTION? (FOR EXAMPLE, 

IS THERE A WAITING LIST?)

It is enormously helpful in randomized experiments in education to have an
ongoing service or programme that is so sought after that there is an extensive
waiting list. For example, imagine that a school district has a very popular
technology magnet school and wants to evaluate it. Because it is a magnet
school, selection artifacts make a matched study out of the question (because
there is no way to match students who went to the trouble of applying to a
magnet school with those who did not). Yet instead of ‘first come, first served’
or some sort of test or application, the district could decide to select randomly
from the pool of qualified applicants. Willingness to participate in testing could
be a criterion for having an opportunity to be selected. This type of design 
has been used, for example, in studies of vouchers, where children who applied
for vouchers to attend private schools were randomly selected to receive them
or not, but could not even be considered unless they agreed to participate in
the study.
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4 IS THERE LIKELY TO BE A SPILLOVER EFFECT FROM THE TREATMENT?

A very efficient design in educational research is one in which children are
randomly assigned to classes within a school, or where teachers or classes are
randomly assigned. However, designs of this type cannot be used when it is 
likely that teachers within a school will exchange ideas and materials, so that the
‘control’ group might be implementing parts of the experimental programme. This
is called the ‘spillover’ effect. In contrast, consider the Tennessee class-size
experiment (Finn and Achilles 1999). Children were individually assigned to large
or small classes, or to large classes with an aide. In this case, there was little reason
to worry that the large-class teachers would get ideas or ‘small classness’ from the
small-class teachers.

Sometimes spillover effects can be minimized in within-school designs by
taking advantage of organization or spatial features of schools. For example,
middle schools are often organized in separate ‘houses’, so treatments randomly
assigned to one house or another may cause less contamination than would be
likely in other circumstances. Multi-track year-round schools often have different,
self-contained ‘tracks’ to which students may be assigned at random (Chambers
et al. 2008, for an example).

While the possibility of spillover is always there in within-school designs, it
at least tends to work against finding experimental–control differences. In
experimental design, it is essential that any potential design flaws be conservative;
ones that might enhance experimental–control differences are to be avoided
particularly.

5 DO TEACHERS HAVE MULTIPLE CLASSES?

One very efficient design, if it makes sense, involves randomly assigning classes
taught by the same teachers. For example, if secondary teachers teach several
mathematics classes each day, each might randomly assign some classes to one
treatment or another. The problem of ‘spillover’ is great with this design, but
it can work if the treatment is a resource or set of materials difficult to transport
from one class to another. For example, a study of the use of technology could
work with the same teachers, teaching technology and no-technology classes,
because it is unlikely that they would sneak computers into their control classes.
If the treatment is intended to affect teachers’ ideas or teaching strategies, this
design is not appropriate, however, because ideas are sure to affect teachers in
all of their classes.

6 IS THE TREATMENT EXPENSIVE?

Obviously, if the treatment is very expensive, providing it for free to a delayed-
treatment group may be impractical. However, there is also a problem in not
providing something to the control group, as it may be that the provision of
resources, not the treatment itself, could account for any effects observed. When
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a delayed-treatment control group is impossible, researchers often give control
schools cash or other resources to make up for the lack of the treatment.

7 TO WHAT SHOULD THE EXPERIMENTAL GROUP BE COMPARED?

In education, a control group is rarely receiving ‘no treatment.’ As long as
children are in school, they are receiving a treatment. This treatment might just
be ‘traditional instruction’, but what does that mean in practice?

The question of what the control group should be depends on the questions
being asked in the experiment. Most often, in a study of a large-scale, practical
intervention, the researchers want to know what the experimental group would
have experienced had the experiment not taken place. This means that some
classes might be using alternative programmes and some might be doing nothing
in particular. The researchers should study and describe what the comparison
groups did, but might not want to affect it in any way. Alternatively, researchers
might want to have a more conceptually ‘pure’ comparison. They often compare
treatments both to a business-as-usual group and to an alternative treatment.
For example, many years ago I did an experiment in which teachers were
randomly assigned to use a form of co-operative learning or a treatment that
used an identical schedule of teaching, practice and assessment (without co-
operative groups) that I called ‘focused instruction’ (Slavin 1980). This treatment
standardized the comparison with the co-operative learning group, so that the
only differential factor was co-operative learning itself. I also included a matched
external ‘business as usual’ control group. To my surprise, while the co-operative
learning group made the greatest gains, the ‘focused instruction’ group also did
very well in comparison to the untreated control group. The focused instruction
treatment could be thought of as an antidote to a Hawthorne Effect (because
those teachers were also in an experimental group), but more likely there were
elements in both the co-operative learning and the focused instruction groups
that were genuinely effective, such as a clear focus on well-specified instructional
objectives. The larger point here is that both the focused-instruction control
and the untreated control were appropriate, but outcomes for each compar-
ison had different meanings. The comparison with the untreated group told
educators and researchers how much gain to expect if they implemented the
entire co-operative learning package. The focused-instruction comparison told
educators and researchers how much of that gain was uniquely due to co-
operative learning itself.

Based on these seven desiderata, it is possible to describe generic designs for
randomized experiments, as follows:

• Delayed treatment control 
Students, classes or schools are assigned at random to immediate and delayed
intervention conditions. The delayed group serves as the control group
during the experiment, and then receives its training and materials (for
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example) at the end of the formal experiment. This works whenever the
treatment duration is not longer than the delayed group’s patience would
permit, and when there is little interest in long-term or lasting effects.
An important variation of delayed treatment is a ‘waiting list control’, when
more students or schools want a given programme than can have it. In this
case, students or schools can be randomly assigned to receive a treatment
now or go on a waiting list (and agree to be tested while they are waiting),
knowing that they will get the treatment within a reasonable time period.

• Within-school/within-teacher comparisons
Students or classes are randomly assigned to experimental or control groups
within a given school, or, in departmentalized schools, a given teacher’s
classes could be randomly assigned. This design is appropriate only if spillover
is unlikely (that is, the treatment is not likely to affect the control classes).

• Random assignment of individuals
Individual students can be randomly assigned to one treatment or another.
This is most possible when the treatment is given to individuals (for example,
tutoring) or where a service is inherently limited to some but not all students
(for example, summer school).

• Alternative treatment comparison 
A variation possible with all designs is provision of a specific alternative treat -
ment as a comparison to an experimental group, rather than a comparison
to ‘traditional instruction’.

When are matched experiments ‘close enough’?

Of course, there are circumstances in which it is not practical to do randomized
experiments on important interventions. For example, early in their development,
few interventions are operating at a large enough scale, or have enough training
capacity, to carry out a randomized experiment of sufficient size. Because of 
the need either to provide intervention at no cost to participants or to provide
incentives, randomized experiments can be very expensive. Sometimes it is
unethical or illegal to withhold treatments to which students are entitled, as in
the case of special education or Title I services, making randomized experiments
impossible.

Conceptually, matched studies cannot completely rule out the possibility of
selection bias. Schools using a given intervention are likely to be more motivated,
cohesive or have more resources to spend than other, similar schools, or contrarily,
they may be more desperate. Besides the obvious possibilities for selection 
bias, any number of less obvious biases could operate. Yet there are clearly ways
to reduce bias and to have matched studies approach the ‘gold standard’ of
randomization even if they can never reach it.

One key requirement for a quality matched study is to have a close match
on key variables from within an underlying similar population. For example, if
you have a study with ten low-achieving schools using a given programme and
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ten matched schools of very similar demographics and prior test scores, the results
are likely to resemble those of a randomized experiment (Slavin and Smith
2008). If you tried to match the ten lowest-achieving schools in a high achieving
district to the highest-achieving schools in a low-achieving district, this would
not be legitimate, as the two sets of schools are from distributions with 
underlying population means that are very different. They would tend to regress
to different means, and would not be equivalent in terms of their local standings
and reputations, among other things. In addition, it is critical that the match-
ing criterion is as highly correlated as possible with the post-test. For example,
match ing on free-lunch count in a study of achievement is not as good as match -
ing on pre-tests, preferably the same test as the one used as the post-test. Finally,
it is important to reduce selection bias as much as possible by choosing as
controls similar schools that could not have selected the treatment rather than
those that had the option to do so but declined. Providing alternative treatments
(such as ‘focused instruction’) may also help, as the controls at least had to be
willing to implement something.

Non-experimental research

Forms of research other than experiments, whether randomized or matched, 
can also be of great value. Correlational and descriptive research are essential in
theory building and in suggesting variables worthy of inclusion in experiments.
Our ‘Success for All’ comprehensive reform programme, for example, owes a
great deal to correlational and descriptive process–product studies of the 1970s
and 1980s (Slavin et al. 2009). As components of experiments, correlational and
descriptive studies can also be essential in exploring variables that go beyond
overall programme effects. In some policy contexts, experiments are impossible,
and well-designed correlational or descriptive studies or longitudinal studies may
be sufficient (see also Chapters 3 and 5).

The experiment, however, is the design of choice for studies that seek to
make causal conclusions, and particularly for evaluations of educational innova -
tions.

Basing educational policy on evidence

Historically, the impact of education research on education practice has been
tenuous at best. Innovation takes place, but it is based on fads and politics rather
than evidence. At best, education policies are said to be ‘based on’ scientific
evidence, but are rarely scientifically evaluated. This distinction is critical. The fact
that a programme is based on scientific research does not mean that it is, in fact,
effective. For example, imagine an instructional programme whose materials are
thoroughly based on scientific research, but that is so difficult to implement 
that, in practice, teachers do a poor job of it, or that is so boring that students do
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not pay attention, or that provides so little or such poor professional development
that teachers do not change their instructional practices. Before the Wright
brothers, many inventors launched airplanes that were based on exactly the same
‘scientifically based aviation research’ as the Wright brothers used at Kitty Hawk,
but the other airplanes never got off the ground. Worse, any programme or
policy can find some research somewhere that suggests it might work.

Given the current state of research on replicable programmes in education,
it would be difficult to require that government funds be limited to programmes
that have been rigorously evaluated, because there are so few such programmes.
However, programmes that do have strong, rigorous evidence of effectiveness
should be emphasized over those that are only based on valid principles, and
there needs to be a strong effort to invest in development and evaluation of
replicable programmes in every area, so that eventually legislation can focus not
on programmes ‘based on scientifically based research’ but on programmes that
have actually been successfully evaluated in rigorous experiments.

Potential impact of evidence-based policies on
educational research

If evidence-based policies take hold, this will be enormously beneficial for all 
of educational research, not just research involving randomized or matched
experiments. First, I am confident that when policymakers perceive that educa-
tional research and development is actually producing programmes that are
shown in rigorous experiments to improve student outcomes, they will fund
research at far higher levels. This should not be a zero-sum game, in which new
funds for experiments will be taken from the very limited funds now available
for educational research (Shavelson and Towne 2002). Rather, making research
relevant and important to policymakers will make them more, not less, willing
to invest in all forms of disciplined inquiry in education, be it correlational,
descriptive, ethnographic or otherwise. The popularity of medical research
depends totally on its ability to cure or prevent diseases, but because randomized
experiments routinely identify effective treatments (and protect us from ineffective
treatments), there is vast funding for basic research in medicine, including
epidemiological, correlational and descriptive studies. Researchers and developers
will be able to argue convincingly that basic research is essential to tell us what
kinds of educational programmes are worth evaluating.

A climate favourable to evidence-based reform will be one in which individual
researchers working on basic problems of teaching and learning will be
encouraged and funded to take their findings from the laboratory or the small-
scale experiment, or from the observation or interview protocol, and to develop
and then rigorously evaluate educational treatments themselves. Education is an
applied field. Research in education should ultimately have something to do
with improving outcomes for children.
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Conclusion

Issues related to experimental designs in research and the relation to evaluation
are also dealt with in Chapters 3 and 4. This chapter is, therefore, mainly
concerned with the importance of experiments for evidence-based policy. It is
argued in this chapter that evidence-based policies have great potential to
transform the practice of education, as well as research in education. Evidence-
based policies could also set education on the path toward progressive
improvement that most successful parts of our economy and society embarked
on a century ago. With a robust research and development enterprise and govern-
ment policies demanding solid evidence of effectiveness behind programmes 
and practices in our schools, we could see genuine, generational progress instead
of the usual pendulum swings of opinion and fashion.

This is an exciting time for educational research and reform. We have an
unprecedented opportunity to make research matter, and then to establish once
and for all the importance of consistent and liberal support for high-quality
research. Whatever their methodological or political orientations, educational
researchers should support the movement toward evidence-based policies, and
then set to work to generate the evidence that will be needed to create the
schools our children deserve.
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Applications of mixed methods
to the field of Educational
Effectiveness Research

Charles Teddlie and Pam Sammons
Louisiana State University and University of Oxford (respectively)

The following chapter has four sections. In the first section, a summary of the
characteristics of mixed methods research (MMR) is provided. The relationship
between EER and MMR is discussed in the second section. Examples of
effectiveness studies using mixed methods are provided in the third section.
Finally, in the fourth section, we draw conclusions concerned with the application
of mixed methods to the field of EER.

Summary of the characteristics of mixed
methods research

The emergence and value of mixed methods research

We are pleased that MMR has been included in this volume as one of the
methodological orientations that is important for the further advancement of
EER. Its inclusion is particularly important since it is the only methodological
orientation in this volume that is not primarily quantitative (QUAN) in nature.
Even longitudinal studies, which often involve the gathering of both qualitative
(QUAL) and QUAN data, are presented here (see Chapter 5) using primarily
QUAN applications, such as value-added indices and growth-curve modelling.
Since we believe that future methodological and conceptual advances in EER
necessarily entail QUAL and MMR applications (in addition to QUAN tech-
niques) this chapter is important in explaining why these applications are crucial
to the further development of EER.

MMR has emerged as an alternative to the dichotomy of the QUAL and
QUAN traditions in the social and behavioural sciences over the past 20 years
(Brannen 1992; Bryman 1988; Creswell 1994; Tashakkori and Teddlie 1998,
2003). A handful of studies have recently looked at the incidence rates of QUAN,
QUAL and MMR studies in the social sciences (Alise 2008; Hart et al. 2009;
Hutchinson and Lovell 2004; Niglas 2004). The incidence rates varied widely
across the studies according to several factors. Overall, there was a preference
for QUAN studies (51 per cent of total empirical research studies averaged across
the four studies) compared to 16 per cent classified as mixed method studies.
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Nevertheless, an incidence rate of 16 per cent is impressive given the late arrival
of MMR as the third methodological approach.

MMR has roots going back some 50 years with the advent of the multitrait–
multimethod matrix and the first triangulation techniques (Campbell and Fiske
1959; Denzin 1978; Webb et al. 1966). Also, many classic studies in the social
sciences were mixed in nature, even though the terminology and typologies
associated with MMR had not been developed (Lipset et al. 1956; Roethlisberger
and Dickson 1939; Warner and Lunt 1941, as summarized in Hunter and
Brewer 2003).

The popularity of MMR is due largely to its flexibility in simultaneously
addressing multiple and diverse research questions through integrated QUAL
and QUAN techniques as described in the following quote from an international
development researcher:

The question of whether quantitative research is preferable to qualitative
research creates a false divide for researchers . . . [T]he most persuasive
policy research includes both of these elements: numbers that define the
scope and patterns of the problem, and a story that shows how the problem
works in daily life and provides for empathetic understanding. These two
elements stem from quantitative and qualitative research.

(Spalter-Roth 2000: 48, italics in original)

‘Numbers and a story’ succinctly illustrate the appeal of MMR, because the
combination of both general numeric findings and specific cases exemplifying
those findings generate a synergy that neither can alone. It is the generation of
new knowledge that goes beyond the sum of the QUAL and QUAN components
that makes MMR so valuable in understanding social phenomena, such as
educational effectiveness.

General characteristics of MMR

A standard definition of MMR is ‘research in which the investigator collects and
analyses data, integrates the findings, and draws inferences using both qualitative
and quantitative approaches or methods in a single study or program of inquiry’
(Tashakkori and Creswell 2007: 4). Key to this definition of MMR is the notion
of integration, which Bryman (2007: 8) characterizes as the extent to which ‘mixed
methods researchers analyse, interpret, and write up their research in such a way
that the quantitative and qualitative components are mutually illuminating’.

‘Mutual illumination’ implies that the QUAN and QUAL components are
specifically designed by MMR researchers to complement one another in
generating new insights about a particular phenomenon of interest. The
inductive–deductive research cycle (cycle of research methodology) depicted 
in Figure 7.1 illustrates this process. The nature of this process signifies that
research on any social phenomenon is cyclical rather than linear; that is,
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researchers are constantly looking for deeper understandings of what they study,
rather than being satisfied with static, constant, linear ‘truths’ or ‘laws’ about
that phenomenon.

A defining characteristic of MMR is a set of unique (that is, different from
either QUAL or QUAN) research designs that it employs. QUAN, QUAL and
MMR designs are distinct from one another in the following ways:

1 QUAN designs are well-established, with the best known typologies describ-
ing experimental, quasi-experimental, correlational and survey research,
which have evolved over the past 50 years (Campbell and Stanley 1963;
Cook and Campbell 1979; Shadish et al. 2002).

2 Standardized QUAL research designs are virtually non-existent, except in a
broadly generic sense (for example, ethnographic research designs, case
study research designs). The major reason for this appears to be the emergent
nature of much of QUAL research, which mitigates against the a priori
specification of distinct typologies of research designs (Patton 2002).

3 MMR designs combine elements of both the QUAN and QUAL orientations
and require creativity and flexibility in their construction and implementation.
While there are several competing typologies of MMR designs, Teddlie and
Tashakkori (2006, 2009) contend that methodologists cannot create a
complete taxonomy of those designs due to their (the designs’) capacity to
mutate into other, diverse forms. Similarly, Maxwell and Loomis (2003:
244) conclude that ‘the actual diversity in mixed methods studies is far
greater than any typology can adequately encompass’.

In this chapter, we use the typology of MMR designs presented by Teddlie
and Tashakkori (2006, 2009), but we encourage readers to investigate alternative
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typologies as well (Creswell and Plano-Clark 2007; Greene 2007; Maxwell and
Loomis 2003). While there is variation among these, there is also considerable
agreement in terms of basic types (for example, parallel or concurrent, sequential).
Teddlie and Tashakkori’s (2006, 2009) MMR design typology consists of 
five ‘families’ of designs: parallel mixed, sequential mixed, conversion mixed,
multilevel mixed, and fully integrated. These designs are defined in Table 7.1,
which also lists the types of MMR data analysis techniques associated with each.

Extended discussion of these designs is not possible in this volume due to
space limitations. The following points summarize the most important infor-
mation about these families of MMR design, which are referred to later in this
chapter when examples are presented.
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Table 7.1 Typology of mixed methods research designs and analytic techniques

MMR design Definition of design ‘family’ Analytic techniques used 
‘family’ with this design ‘family’

Parallel mixed Designs in which mixing occurs in an Parallel track analysis;
designs independent manner either simultaneously cross over track 

or with some time lapse; QUAL and analysis
QUAN strands are planned/implemented 
in order to answer related aspects of 
same questions

Sequential mixed Designs in which mixing occurs across Sequential QUAL →
designs chronological phases (QUAL, QUAN) of QUAN analysis;

the study; questions or procedures of Sequential QUAN →
one strand emerge from or are dependent QUAL analysis;
on the previous strand; research questions iterative sequential 
are built upon one another and may mixed analysis
evolve as the study unfolds

Conversion Designs where mixing occurs when one Quantitizing narrative 
mixed designs type of data is transformed and then data; qualitizing 

analysed both qualitatively and numeric data 
quantitatively (for example, profile 

formation); inherently 
mixed data analysis

Multilevel Designs where mixing occurs across Analysing data from 
mixed designs multiple levels of analysis; Mixing occurs each level separately, 

as QUAN and QUAL data from different then integrating them 
levels are analyzed and integrated to vertically
answer aspects of the same or related 
questions

Fully integrated Family of mixed methods designs in which Combinations of all 
mixed designs mixing occurs in an interactive manner at those above

all stages of the study; at each stage, one 
approach affects the formulation of the 
other

Adapted from Teddlie and Tashakkori 2006, 2009



• Parallel mixed designs evolved from the concept of methodological
triangulation, which is the concurrent use of both QUAL and QUAN
methods to study a single problem (Patton 2002).

• Parallel mixed designs can be challenging for a single investigator to conduct
because they involve at least two concurrent independent research strands,
one of which is QUAL in nature and one of which is QUAN. (See Box
7.1 for the definition of a ‘strand’).

• Meta-inferences can be drawn from parallel mixed designs (and the other
types of mixed designs described in this chapter) by integrating the inferences
from the QUAL and QUAN strands of a mixed methods study.

• The defining characteristic of sequential mixed designs is that they involve
chronological phases of a study (for example, QUAL → QUAN or QUAN
→ QUAL) in which a QUAN strand is followed by a QUAL strand, or
vice versa. The questions and/or procedures of one strand are dependent
on inferences from the previous strand. Figure 7.2 presents an illustration
of a sequential mixed design. (Box 7.1 defines the elements in Figure 7.2.)

• The most basic sequential mixed design involves only two strands, one
QUAL and one QUAN. Iterative sequential mixed designs have more than
two strands. They can range from simple applications to increasingly more
complex ones (such as QUAN → QUAL → QUAN → QUAL → QUAN).
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Box 7.1 Description of the elements contained in Figure 7.2

The rectangles and ovals in Figure 7.2 represent either a QUAL or a QUAN
stage of a research strand. For example, if the sequential mixed design
presented in this figure was a QUAN → QUAL design, then the rectangles
on the left side would represent the stages of the QUAN strand, while the
ovals on the right side would represent the stages of the QUAL strand.

Each research strand found in Figure 7.2 has three stages (conceptualization,
experiential, inferential). The experiential stage is broken into two components
(methodological and analytical) to allow for conversion designs (that is, designs
in which QUAL data are converted into QUAN data or vice versa). In a
QUAL strand, all stages are QUAL in nature (that is, qualitatively orientated
questions, employing QUAL methods and data analysis procedures, with
conclusions based on a QUAL inference process); in a QUAN stand, all stages
are QUAN in nature.

There is a broken line arrow in Figure 7.2 going from the inferential stage
to the methodological component of the experiential stage. This indicates
that conclusions emerging from the inferential stage of a study may lead to
further data gathering and analysis in the same study.



• Conversion mixed designs are those in which one type of data is trans-
formed into another and then analysed both qualitatively and quantitatively.

• ‘Quantitizing’ refers to the process of converting QUAL data into numerical
codes that can be analysed statistically (Miles and Huberman 1994).

• ‘Qualitizing’ refers to the process of converting QUAN data into data that
can be analysed qualitatively (Tashakkori and Teddlie 1998).

• Multilevel mixed designs are specialized designs that can be used to examine
organizations that have a hierarchical structure, such as schools or hospitals
(Tashakkori and Teddlie 1998).

• Fully integrated mixed designs are the most complete manifestation of
MMR designs, in which the mixing of the QUAL and QUAN approaches
occurs in an interactive manner across all stages of a study (Holbrook and
Bourke 2004; Schulenberg 2007).
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EER and MMR

Definition of Educational Effectiveness Research

Creemers and Kyriakides (2008: 4) defined EER as follows:

. . . we are using the term ‘educational effectiveness’ rather than the terms
‘teacher’ and/or ‘school effectiveness’ to emphasize the importance of
conducting joint school and teacher effectiveness research which can help
us identify the interactions between the school, classroom, and individual
student levels, and their contributions to student learning. Finally, it is
important to note that EER refers to the functioning of the system as a
whole, and can therefore be used to develop models of effectiveness . . .

Creemers and his colleagues have long advocated for the use of the term
‘educational effectiveness’ (see Chapter 1 in this volume), arguing convincingly
that researchers must examine effectiveness factors (and their interactions) at all
levels of the process in order truly to understand effectiveness in educational
settings (Creemers and Reezigt 1991, 1996; Creemers and Scheerens 1994;
Scheerens and Bosker 1997). This idea has gained more support over the past
several years primarily because Creemers, Kyriakides and their colleagues have
developed two ‘generic’ theories of educational effectiveness (first the comprehen-
sive model, then the dynamic model – again, see Chapter 1) and have since
gathered empirical evidence to support them (Creemers and Kyriakides 2006,
2008; De Jong et al. 2004; Kyriakides 2005). These theoretical models have
gone a long way toward dispelling the criticism that school/educational effective -
ness research needs more of a theoretical base (Teddlie and Reynolds 2000;
Sammons 1999).

While the comprehensive and dynamic models are the most ambitious of those
proposed for EER, other models have also incorporated the school and teacher
levels (Scheerens 1992; Slater and Teddlie 1992; Stringfield and Slavin 1992).
Another sophisticated example of the use of theory in school effectiveness research
is the employment by Muijs et al. (2004) of three theoretical frameworks (contin-
gency theory, compensation hypothesis, additivity hypothesis) in their review of
the literature on ‘improving schools in socioeconomically disadvantaged areas’.

Methods currently used in EER

For the purposes of this chapter, we consider the contemporary field of EER to
be composed of the extensive school effectiveness research (SER) and teacher
effectiveness research (TER) literatures, plus theory and a limited amount of
empirical work conducted recently under the inclusive umbrella of EER. This
section contains a discussion of the methods that are commonly used in SER,
TER and EER, which sets the stage for further consideration of how MMR can
contribute to the development of EER.
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Most SER studies have traditionally been concerned with phenomena that
occur throughout the school, while most TER studies have been concerned with
processes that occur within the classroom (Teddlie 1994). There are three distinct
traditions of SER (Reynolds et al. 2000), which include:

• School effects research. This research is concerned with the study of the
foundational properties of school effects (for example, the magnitude of
school effects). These studies are almost exclusively QUAN in nature, evolving
from regression-based input–output research (Coleman et al. 1966) under the
general label of the educational production function to more mathematically
complex multilevel and SEM research studies (see Chapters 11 and 12).

• Effective schools research. This research is concerned with the processes
of effective schooling and, in its initial phases, involved the generation of
case studies of outlier schools that produced high achievement scores for
students living in poverty (Edmonds 1979; Weber 1971). Cumulative results
from effective school research have resulted in detailed descriptions of
effective school characteristics across a variety of contexts (James et al. 2006;
Marzano 2003; Reynolds and Teddlie 2000; Sammons 1999). These studies
are primarily QUAL in nature, although several have used QUAN descriptive
statistics to supplement the case study narratives.

• Theory based school improvement research. Harris and Chrispeels (2006:
7) have identified examples of school improvement models that ‘draw upon
. . . robust evidence . . . to produce interventions that were solidly based on
tried and tested practices’. These include Improving the quality of education
for all (Hopkins et al. 1996) and High Reliability Schools (Stringfield et al.
2008). Studies based on these school improvement projects have focused
on QUAN results, but some have also included QUAL themes that emerged
from interviews and observations (Stringfield et al. 2008), thereby resulting
in MMR.

In summary, SER can be described as having three separate traditions, each of
which can be characterized as predominantly QUAN or QUAL; there has been
relatively more overall emphasis in SER on the former (QUAN) than the latter
(QUAL). There has also been limited MMR conducted in SER in large-scale
studies involving complex sets of research questions (Brookover et al. 1979;
Mortimore et al. 1988; Sammons et al. 1997; Teddlie and Stringfield 1993).

TER is an area of research that attempts to identify those teacher behaviours
that are related to student learning or achievement. Creemers (2008) recently
discussed the evolution of TER through the ‘lens’ of the four editions of the
Handbook of research on teaching. His analysis and that of others (Rosenshine
1996) led to the following conclusions regarding the use of methods in that
field:

• TER began in the United States and elsewhere in the 1950s, with notable
early studies including Medley and Mitzel (1959) and Flanders (1960). The
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initial studies were correlational in nature and evolved into more complex
process–product studies and experimental/quasi-experimental research.

• The first handbook (Gage 1963). According to Creemers (2008: 474),
the ‘most important message of the first handbook was the plea for empirical
evidence for theories about teaching, which concentrates on process–product
relations’. The empirical evidence was QUAN in nature and emphasized
the statistical testing of the relationships between teaching processes and
student learning.

• The second handbook (Travers 1973). The emphasis on theory-based
empirical QUAN-orientated research continued; some initial criticism of this
research surfaced. Rosenshine (1996) concluded that the largest number of
QUAN-orientated TER studies were produced in the 1970s.

• The third handbook (Wittrock 1986). This volume was notable for the
inclusion of two extensive reviews of TER (Brophy and Good 1986;
Rosenshine and Stevens 1986) and an influential review and critique of SER
(Good and Brophy 1986). Between the publication of the third and fourth
handbooks, there was increasing criticism in the United States and elsewhere
of the process-product model and the dominance of QUAN methods in
TER (Gage and Needels 1989). The first Handbook of qualitative research
edited by Denzin and Lincoln appeared in 1994, challenging the traditional
postpositivist QUAN research model. The paradigm wars were in full bloom
during this period (Gage 1989).

• The fourth handbook (Richardson 2001). This handbook took a
decidedly different approach to research on teaching, with an emphasis on
QUAL methods and the postmodernist point of view. Creemers (2008)
noted that only two of the 51 chapters in this handbook focused on the
traditional QUAN-orientated TER approach.

In summary, there are two distinct and separate traditions of TER. The traditional
QUAN orientation dominated during most of the last half of the twentieth
century, while the QUAL approach has gained some influence over the past 
20 years. There is little tradition of MMR in TER, which is interesting since
several teacher observational systems exist that combine both QUAN and QUAL
data gathering and analysis techniques (Teddlie and Tashakkori 2009).

Recent advancements in EER are directly related to the work of Creemers
and his colleagues regarding the comprehensive and dynamic models of educa-
tional effectiveness. Creemers and Kyriakides (2008) presented studies from
Cyprus and the Netherlands testing the ‘validity’ of the comprehensive model
(de Jong et al. 2004), plus a comparative study that utilized a secondary analysis
of the TIMSS 1999 study. These studies were QUAN in nature, employing
large numeric databases to estimate statistically school and classroom effects on
student achievement. Similarly, Kyriakides and Creemers (2008) reported the
results of a recent QUAN analysis of the validity of the classroom-level factors
in the dynamic model.

Applications of mixed methods  123



As noted at the beginning of this chapter, all the methodological orientations
presented in this volume on EER are QUAN in nature, with the exception of this
chapter on MMR. There is little or no discussion of QUAL data collection or
analysis either in this volume, Creemers and Kyriakides (2008) or any of the studies
that validated components of the EER models. This leads to the conclusion that
the emerging area of EER, as exemplified in this volume and in Creemers and
Kyriakides (2008), is clearly situated within the postpositivist QUAN-orientated
tradition (for example, see Chapter 6).

On the other hand, it has been documented throughout this section that
there are distinct traditions of both QUAL and QUAN research in TER and
SER, with a limited number of studies (primarily in SER) that use MMR tech -
niques. This leads to a couple of key questions: are MMR techniques applicable
to EER, and if so, what can they contribute to its further development?

Are MMR techniques applicable to EER?

In a way, this is a rhetorical question, but it is important to take a slight
digression, before addressing those applications, to consider some philosophical
differences between ‘postpositivistic’ EER and ‘pragmatic’ MMR, as described
by Tashakkori and Teddlie (1998, 2003) and many others.

We do not want to rehash the paradigm wars any more than is necessary, since
we agree with the following paraphrased sentiment: ‘most researchers (have)
become bored with philosophical discussions and (are) more interested in getting
on with the task of doing their research’ (Smith 1996: 163). Nevertheless, we feel
that it is valuable to consider a few differences in postpositivism and pragmatism,
since those differences may better inform us with regard to how pragmatic MMR
can enhance postpositivistic EER.

Paradigm contrast tables (Lincoln and Guba 1985) contain contrasts on
several dimensions between philosophical viewpoints held by different researchers.
In the following section, we compare postpositivists and pragmatists on three
dimensions particularly relevant to the application of mixed methods to EER:

• Methods – postpositivists utilize QUAN methods primarily, as opposed to
pragmatists who utilize both QUAN and QUAL methods.

• Logic – postpositivists emphasize deductive logic, especially through the use
of the hypothetico-deductive model as opposed to pragmatists, who ascribe
to the inductive/deductive research cycle presented in Figure 7.1.

• The possibility of generalizations – postpositivists sometimes make nomo thetic
statements (context- and time-free generalizations) under highly prescribed
circumstances, while pragmatists are more inclined toward ideographic
statements (context- and time-bound generalizations).
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The use of methods in EER

With regard to methods, we described EER as primarily (actually, almost entirely)
QUAN based on the information presented in this volume and in Creemers and
Kyriakides (2008). We believe that individuals conducting EER will also use
mixed methods if they see the value of adding QUAL methods to their research;
otherwise, their orientation will stay primarily QUAN.

It should be noted, in fairness, that the tendency of some EER researchers
to emphasize QUAN methods is due to the extreme positions that some
individuals professing a QUAL orientation (often self-described as postmod-
ernists) take toward empirical research. Gorard and Taylor (2004: 161, italics
added) described this orientation as follows:

Research is here merely the deconstruction of meaning rather than the
search for the truth (or preference) or practicality (what works). And so,
‘Post-modern theorizing alternates between banality and absurdity, between
triviality posing as revelation and bizarre claims that conflict with common
sense’ (Bailey 1999: 162) . . . [B]y denying the possibility that there is any
means of judging knowledge claims to be more or less true, postmodernism
makes research a completely pointless activity.

Fortunately, most QUAL and MMR researchers believe in the efficacy of empirical
research. MMR evolved to a large degree from methodological triangulation,
which refers to ‘the use of multiple methods to study a single problem’ (Patton
2002: 247).

Methodological triangulation is often valued for generating convergent results
(Greene and Caracelli 1997), but its value in terms of producing divergent results
is as important (Arnon and Reichel 2009; Erzberger and Kelle 2003). Divergent
findings are valuable in that they lead to a re-examination of the conceptual
frameworks and the assumptions underlying each of the two components.

For instance, let’s consider a hypothetical mixed methods study of the existence
and characteristics of cross-level interactions within EER (for example, school
leadership style interacting with some aspect of teaching quality). Such a study might
yield convergent or divergent results; in either case, the hypothetical mixed
methods study would yield more robust and interesting findings than a QUAN (or
QUAL) stand-alone study. ‘Numbers and a story’ generate a synergy that neither
could alone, and the research reports involving both are inherently more engaging.

The methodology issue, therefore, boils down to whether QUAN-orientated
researchers working within EER believe that QUAL methods are valuable to
the further development of their field. We believe that many researchers working
within EER appreciate the value of QUAL methods, since postpositivists have
long recognized the merit of those methods. As Patton (2002: 586) concluded:
‘When eminent measurement and methods scholars such as Donald Campbell
and Lee J. Cronbach began publicly recognizing the contributions that qualitative
methods could make, the acceptability of qualitative/naturalistic approaches was
greatly enhanced’.
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The use of logic in EER

With regard to logic, we characterized postpositivists as employing the
hypothetico-deductive model (H-DM), while pragmatists are more likely to use
both induction and deduction in their research.

Creemers and Kyriakides (2008) were intent on ‘testing the validity’, first of
the comprehensive model and then of their proposed dynamic model. These
models are based on literally hundreds of studies conducted in TER and SER
over the past 40–50 years. Creemers and Kyriakides (2008) tested their models
through QUAN-orientated empirical studies that followed the deductive logic
of the H-DM. If results from those studies were consistent with their hypotheses,
then these ‘validity tests’ of their models were affirmative. If the data were not
consistent, then ‘the theory must either be discarded in favour of a better theory
or modified to accommodate the newly acquired facts’ (Schwandt 1997: 66).

MMR techniques, on the other hand, can be used in a variety of situations,
including theory verification, but they are best utilized when both theory-based
research hypotheses and novel research questions are being considered. MMR
techniques employ the cycle of research methodology (Figure 7.1), which entails
the use of inductive and deductive logic in an iterative manner.

Differences in the use of induction and deduction in research may be
conceptualized in terms of William Whewell’s distinction (Fisch 1991) between
what would later (Reichenbach 1938; Schickore and Steinle 2006) be called:

• The context or logic of justification. The process associated with the testing
of theories and hypotheses.

• The context or logic of discovery. The process associated with the
generation of theories and hypotheses.

Before Whewell’s distinction, these two components of the scientific method were
both presumed to be part of what was then called the inductive method of science.
While emphasizing the logic of justification as a key part of the scientific method,
Whewell also pointed out the importance of the context of discovery, which
involves creative insight and possibly leads to new knowledge (Teddlie and
Johnson 2009).

MMR involves using both the logics of discovery and justification in the same
research studies, which is exemplified by those studies having both research
hypotheses (testing of theories) and research questions (involving the discovery
of new knowledge). MMR in educational effectiveness would, therefore, typically
involve some hypotheses related to a theoretical position, plus some research
questions about aspects of schools or of teacher behaviour about which little is
known.

Creemers and Kyriakides (2008) make extensive use of the context or logic
of justification in testing their models of educational effectiveness, but they do
not appear to have employed the logic of discovery. (Our comments here refer
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to Creemers and Kyriakides’ work as described in this volume and in their 2008
book. Both have been involved in other EER studies that actively employed
QUAN and MMR methods, such as Reynolds et al. 2002; Teddlie et al. 2006.)
The logic of discovery is an area where MMR could enhance future EER.

How does new knowledge emerge in educational research? Some new
knowledge can emerge when hypotheses are rejected and ‘new facts’ materialize,
but these facts are typically limited to the topic(s) that the hypothetical propo-
sitions addressed. We believe that most new knowledge in educational research
comes from asking innovative questions about the phenomena under study, or
from the serendipitous emergence of novel insights that occurs during fieldwork.
Mixed methodologists generate ‘new’ knowledge through answering innovative
research questions using inductive logic.

The logic issue, therefore, reduces to whether researchers working within EER
want to generate new knowledge about a phenomenon of interest, as well as
test the validity of their a priori theoretical propositions. We believe that many
educational effectiveness researchers want to do both, and MMR techniques are
appropriate for their use.

The possibility of generalizations in EER

With regard to the possibility of generalizations, we indicated that postpositivists
believe there are some highly prescribed circumstances in which nomothetic
statements are possible, while pragmatists are more inclined toward making
ideographic statements.

Creemers and Kyriakides (2008) are intent on developing what they call
‘generic theory’ in EER, as opposed to ‘differentiated theory’. These generic
factors operate across all settings, although there is an acknowledgment that
‘their impact on different groups of students or teachers or schools may vary’
(Creemers and Kyriakides 2008: 82). Despite this, differential educational effects
‘should be incorporated as a refinement’ to generic theory (Creemers and
Kyriakides 2008: 82).

A similar sentiment is made in Chapter 3 of this volume: ‘. . . it is assumed
that there are generic and measurable factors that have a stable impact on
effectiveness and operate similarly in different educational settings’. This position
is a consistent one, going back to earlier writings by Creemers (1994) on the
characteristics of the ‘effective classroom’. Forty to 50 years of relatively consistent
TER and SER results constitute the ‘highly prescribed circumstances’ that allow
Creemers and Kyriakides (2008) to promote the generalizability of the dynamic
model across different educational contexts.

MMR researchers, on the other hand, are more concerned about the ‘fallibility’
of their knowledge and are unsure that ‘context- and time-bound generalizations’
are indeed possible. To these researchers, context- and time-bound ideographic
statements are not only more defensible, but they are often more interesting
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since they focus on the particularization or uniqueness of individual cases (Stake
1995). In fact, the study of the context (that is, the particular social and
environmental characteristics) of school effects is a clearly delineated sub-area
within SER (Sammons et al. 1997; Teddlie 1994; Teddlie et al. 2000), the
origin of which goes back to studies of the ‘balance effect’ (Willms 1985) and
differential ‘peer group influence’ (Murnane 1975).

This difference of opinion on the issue of generalizability is a fundamental
one that has no easy resolution, which is reminiscent of many of the paradigm
war debates. This issue may be reframed in terms of the relative importance 
of particularization to a case (Stake 1995) versus generalization to a theory 
(Yin 2003).

One caution that mixed methodologists can make concerning the issue of
generalizations is that an overemphasis on ‘generic theory’ may result in our
missing important context-specific educational phenomena. A recent MMR study
(Teddlie and Liu 2008) was conducted in China to determine if characteristics
of effective schools and teachers derived from US literature would also be
important in China. The researchers translated instruments developed in the
United States to measure school and teacher effectiveness into Mandarin Chinese.
Chinese researchers then conducted all data gathering activities in the research
project. Results indicated that teacher and school effectiveness factors based on
research findings from the United States successfully differentiated between
Chinese elementary schools that were categorized a priori into more-effective
and less-effective categories. Thus, there was strong evidence to support the
researchers’ hypotheses that the effectiveness factors developed in the United
States were ‘universals’ (Reynolds et al. 2002) that would also be important 
in China.

The researchers also conducted case studies of six schools, which were guided
by very general research questions aimed at the discovery of unique effectiveness
factors: What effective teaching practices observed in China are different from
those described in the international teacher effectiveness literature? What effective
schooling practices observed in China are different from those described in the
international school effectiveness literature?

The Chinese researchers utilized QUAL techniques to identify unique Chinese
factors related to educational effectiveness. For example, they discovered three
types of teachers in the Chinese schools for whom there are no equivalents in
the United States or western Europe: banzhuren, daduifudaoyuan, and daike
(Teddlie and Liu 2008). The activities of these different types of teachers were
crucial in determining the effectiveness of their schools.

If this research study had been limited to the QUAN procedures used to
assess the research hypotheses, then these three types of Chinese teachers would
not have been ‘discovered’ through the case study research. The discovery of
new knowledge regarding educational effectiveness in China was made possible
through QUAL-orientated research associated with broad research questions
unrelated to theories of educational effectiveness.
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Why MMR techniques may be particularly useful in EER

The following section presents a brief summary of the attributes of MMR that
might make its application particularly valuable in EER.

MMR CAN SIMULTANEOUSLY ADDRESS A RANGE OF BOTH CONFIRMATORY

AND EXPLORATORY QUESTIONS USING BOTH QUAL AND QUAN

APPROACHES

Combining QUAN and QUAL methods may be the best way to answer
comprehensively important EER questions related to both causal effects and
causal mechanisms, thereby allowing the further development of theoretical
models. Teddlie and Tashakori (2009: 128–9, bold and italics in original)
described this strength:

While both QUAL and QUAN researchers are interested in studying causal
relations, the two types of research have different strengths in terms of
specifying those relationships . . . Many QUAN oriented researchers believe
that QUAN (methods) are better positioned to examine causal effects (i.e.,
whether X caused Y), because these research designs can better control for
the impact of extraneous variables. On the other hand, many QUAL oriented
researchers believe that QUAL methods are better positioned to answer
questions related to causal mechanisms or processes (i.e., how did X cause
Y). Through a skillful mixture of both QUAL and QUAN methods, MMR
researchers can address both causal effects and causal mechanisms questions
simultaneously . . .

MMR PROVIDES BETTER (STRONGER) META-INFERENCES DUE TO THE USE

OF DIFFERENT TYPES OF DATA SOURCES

Many authors have commented on this strength of methodological triangulation
from the mid-1960s through contemporary writing. A classic combination of
methods leading to stronger meta-inferences involves the use of closed-ended
questionnaires (through mail, internet, and so on,) together with personal one-
on-one interviews, resulting in a mixed methods database with both breadth
and depth of information.

MMR PROVIDES THE OPPORTUNITY FOR A GREATER ASSORTMENT OF

DIVERGENT VIEWS

Divergent results may lead to (1) quality audits to be sure that methodological
techniques were used appropriately in all phases of the research; (2) additional
conceptual work required to make the inconsistency understandable; and (3)
the design of a new study or phase for further investigation.
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MM MANUSCRIPTS ARE OFTEN MORE ENGAGING AND CONVINCING THAN

THOSE BASED ON ONE METHODOLOGICAL APPROACH ALONE

The appeal of ‘numbers and a story’ was noted earlier in this chapter. Sandelowski
(2003) discussed methods for creating powerful combinations of ‘tables and
tableaux’ in MMR reports.

Examples of SER and TER using mixed methods

In the following section we provide details on four studies that used mixed
methods to examine educational effectiveness: two of these come from the SER
tradition (Jang et al. 2008; Teddlie and Stringfield 1993) and two from the
TER tradition (Day et al. 2008; Teddlie et al. 2006). These examples were
selected because they demonstrate one or more of the advantages of MMR that
were noted previously.

Examples of MMR studies within the SER tradition

Results from the first study described in this section (Teddlie and Stringfield
1993) were published while the initial MMR literature was emerging (Brannen
1992; Bryman 1988; Creswell 1994; Greene et al. 1989; Morse 1991). This
study was designed and partially implemented before there were published
typologies of mixed methods designs and analytical procedures, but it used
techniques that would later become ‘standard’ in MMR.

The second study in this section (Jang et al. 2008) successfully utilized design,
sampling and analysis techniques from the formal mixed methods literature in
a study of ‘schools that were succeeding from socioeconomically disadvantaged
areas’, which is a defined sub-area within SER (James et al. 2006; Muijs et al.
2004). The literature review for Jang et al. (2008) contained an interesting mix
of references from both MMR and EER.

The Louisiana School Effectiveness Study (LSES) (Teddlie and
Stringfield 1993)

The LSES was composed of a series of five interrelated phases: an initial pilot study
(LSES-I, 1980–82), a macro-level 76-school process–product study (LSES-II,
1982–84), and a three-phase micro-level 16-school longitudinal mixed methods
study (LSES III, IV, and V with extensive data gathering in 1984–85, 1989–90
and 1995–96). This synopsis focuses on longitudinal MMR from LSES-III and
LSES-IV, which involved eight matched pairs of schools initially classified as
either more effective or less effective using baseline achievement data.

We discuss the following components of the LSES in this section:

• the composition of the interdisciplinary team that conducted the LSES;
• the combination of research hypotheses and questions that guided the study;
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• the fully integrated mixed methods design of the study;
• results based on both the logics of justification and of discovery.

Members of this research team had a wide variety of educational, methodological
and experiential backgrounds, as recommended by Shulha and Wilson (2003).
All of the team members were comfortable working on a mixed methods study,
although some of them were selected specifically for their QUAN or QUAL
methodological expertise. Research meetings involved discussion of all data
sources, resulting in case studies for all 16 schools investigated during LSES-III
and LSES-IV. Six of those case studies were published in Teddlie and Stringfield
(1993), along with numerous statistical tables comparing the more-effective with
the less-effective schools.

LSES-III and LSES-IV were guided by several complementary research
hypotheses and questions. The hypotheses included the following:

Research hypothesis 1: Schools originally classified as either more effective or as
less effective will remain in those effectiveness classifications during LSES-
III and LSES-IV. This hypothesis predicted that school effects would be
stable from the initial classification (baseline data from 1982–84) through
LSES-III (1984–85) and LSES-IV (1989–90).

Research hypothesis 2: Teachers in more-effective schools will generate higher
time-on-task rates than will teachers in less-effective schools.

Research hypothesis 3: Teachers in more-effective schools will display more effective
teaching behaviours in their classrooms than teachers in less-effective schools.

These and other hypotheses were tested using primarily QUAN data gathered
in the schools and classrooms. While the QUAN analyses of these hypotheses
were important to the researchers, they were also interested in how the processes
of effective schooling and teaching evolve over time. The researchers examined
those processes more closely by investigating several research questions, including
the following:

QUAL research question 1: What are the themes associated with changes in school
effectiveness (improvement, decline) over time, if such changes occur?

QUAL research question 2: How are teachers selected and socialized at more-
effective schools as opposed to less-effective schools?

QUAL research question 3: What are the differences in school-level leadership in
more-effective schools as opposed to less-effective schools?

These and other research questions evolved over the course of the study and
were tested using primarily QUAL data gathered in the schools and classrooms.

The LSES employed a fully integrated MMR design in which the mixing of
the approaches occurred in an interactive manner across all stages of the study.
The fully integrated mixed methods design was first presented formally in the
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MMR literature by Tashakkori and Teddlie (2003), but it was employed more
than a decade earlier in the LSES. Steps in the fully integrated MMR design
employed in the LSES included the following:

• At the conceptualization stage, the formulation of the QUAN-orientated
questions informed the formulation of the QUAL-orientated questions, and
vice versa. The complementary nature of the initial research hypotheses and
questions are demonstrated in Research hypothesis 1, which predicted
stability of school effects, and Research question 1, which addressed the
emergence of new themes if changes occurred.

• At the experiential (methodological/analytical) stage, QUAL data were
quantitized and analysed statistically, and QUAN data were qualitized and
profiles of schools were generated. The results of these statistical and profile
analyses affected the formulation of additional QUAL and QUAN analyses.

• Quantitizing QUAL teacher data led to analyses demonstrating differences
in standard deviations of teaching behaviour exhibited in differentially
effective schools. This led to new questions, such as ‘What reduced the
variance in teaching behaviours in more-effective schools?’ Socialization
experiences, among other phenomena, were examined (Kirby 1993).

• Qualitizing QUAN data led to four profiles of schools, including declining
and improving schools. This led to more focused questions, such as ‘Are
there differences and similarities in the themes associated with school
improvement or decline?’

• Results from the two major QUAN and QUAL strands, and their crossover
analyses (quantitizing, qualitizing), resulted in meta-inferences, which were
expressed in a dozen or so major conclusions.

Results from LSES-III and LSES-IV were based on both the logics of
justification and of discovery. Supporting evidence for Research hypotheses 1
through 3 was based on the logic of justification. For instance, schools originally
classified as either more effective or as less effective remained in those effectiveness
classifications in LSES-III. On the other hand, half of the matched pairs of schools
experienced changes in effectiveness status by the time of LSES-IV, thus leading
to emergent themes based on the logic of discovery. Other examples of LSES-
III and LSES-IV results based on the logic of discovery included:

• There were no district effects on school effectiveness. The investigators were
surprised by the lack of meaningful influences from the district offices on
school effectiveness across all phases of the LSES. This result has been
recently replicated by Tymms et al. (2008) and others.

• The emergence was seen of what the researchers called the process of ‘stable
adaptability’, where the principal of one of the case study schools was able
to maintain an effective school despite significant context changes at the
school.
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• Differences were seen between ‘naturally occurring’ school improvement
(for example, caused by pressures from the local community) and improve-
ment efforts that were led by external agents.

Jang et al. (2008) study of schools in challenging circumstances

One of the advantages of MMR is that it provides stronger meta-inferences due
to the use of different types of data sources. A common question asked of MMR
researchers is ‘How do you integrate the inferences from your separate QUAL
and QUAN data sources into integrated meta-inferences?’ A typical response is
that MMR researchers look for common themes across the two types of data
and interpret those to be the integrated themes. Simple convergence across
QUAL and QUAN data sources, however, may not generate the most fully
realized and integrated meta-inferences.

Jang et al. (2008) employed a parallel mixed methods design in which the
QUAL and QUAN strands were analysed independently using thematic and
factor analyses, respectively. After these traditional analyses were completed, the
authors applied four additional integrative strategies to enhance the quality of
their meta-inferences: parallel integration for member checking, data transform -
ation for comparison, data consolidation for emergent themes and case analysis
for the generation of refined school profiles.

Parallel integration for member checking typically involves having
participants verify the investigators’ initial interpretations of QUAL data. In this
study, Jang et al. (2008) had principals check the researchers’ preliminary inter -
pretations of three types of data: their QUAL thematic analysis of 11 themes from
the interview and focus group data, their QUAN analysis (with graphic displays)
of the nine QUAN factors from the survey analysis, and their description of the
school context. Such member checks can help clarify and contextualize the data
from different research strands before final meta-analyses are made.

Data transformation for comparison in the Jang et al. study involved
qualitizing the nine QUAN factors into narrative descriptions, which were then
compared with the QUAL themes. Overlapping and non-overlapping aspects of
school improvement were ascertained based on comparison of the two sets 
of QUAL factors.

Data consolidation for emergent themes was a third technique used by
Jang et al. In this study, eight integrated themes emerged from comparisons of
original and reorganized QUAL and QUAN data. Three of those themes were
common across the original thematic and factor analyses, but the other five
consolidated themes emerged based on additional integrative strategies.

Case analysis for the generation of refined school profiles was the final
integrative strategy employed by Jang et al. based on earlier work by Caracelli
and Greene (1993). The investigators took the case study schools from their
research, generated narrative profiles for each of them and then compared the
narratives with regard to the eight consolidated themes that had emerged from
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the previous step of the analysis. An iterative analytic process then examined the
different ways schools coped with the integrated themes (for example, high versus
low parental involvement in successful schools).

The Jang et al. (2008) study is important methodologically because it points
to new directions for fully integrating QUAN and QUAL themes beyond merely
looking for commonalities across the original thematic and statistical analyses.
Jang et al. (2008: 43) quoted one of their graduate researchers’ conclusions
about being involved in the study:

My participation in a mixed methods project expanded my horizons from
research methodology as a debate between paradigms that dealt with ‘people
versus numbers’ and from an understanding that abstract debates between
‘either-or’ actually, and quite compellingly, dialectically resolve into an ‘and’.

This qualitatively orientated graduate researcher had originally been concerned
about how she could contribute to the QUAN part of the study. She commented
that her ‘rich’ understanding of the QUAL data led her to seek a better
understanding of the statistical analyses and graphic displays, which she discovered
to be ‘full of life’.

Examples of MMR studies within the TER tradition

The first study described in this section is a four-year national study – Variations
in Teachers’ Work and Lives and their Effects on Pupils (VITAE; Day et al.
2006; Day et al. 2007). This study adopted a longitudinal MMR design that
can be described as complex, iterative and sequential (Sammons et al. 2007;
Day et al. 2008), although the initial conception involving several linked QUAN
and QUAL phases did not envisage the extent of iterative integration that
evolved over the course of the research.

The second study in this section involves the development of the International
System for Teacher Observation and Feedback as described by Teddlie et al.
(2006). This study employed a complex, iterative sequential mixed methods
design, with a series of inductive/deductive steps.

From integration to synergy in a mixed study of teachers’ lives,
work, and effectiveness (Day et al. 2008)

The VITAE study was commissioned to inform education policy development
in England by the Department for Children, Schools and Families (DCSF) on
the basis that ‘. . . any attempts to sustain initiatives aimed at raising standards
in schools and classrooms and to retain high quality teaching are unlikely to
succeed without a more comprehensive understanding of teacher effectiveness,
its complex configuration and its antecedents’ (DfES Tender No: 4/RP/173/99:
6–7). The project was intended to address several areas of particular policy
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concern at the time, including improving the quality of teaching, raising standards
of pupil attainment and supporting retention to the teaching profession.

Although the project research team was independent of government, the
design itself had to relate to the tender document requirement that ‘teacher
effectiveness should be assessed in relation to outcomes’, and that ‘robust and
reliable quantitative data, and in-depth qualitative data from a representative
sample of LAs [Local Authorities – the equivalent of school districts] and schools
should be collected’. The project funders’ requirements indicated they expected
a mixed methods approach to the topic, and this concurred with the method-
ological preference of the research team. The VITAE research was conducted
between 2001 and 2005 with a nationally representative sample of 300 primary
(Key stage 1 and 2) and secondary (Key stage 3 English and mathematics)
teachers working in 100 schools across seven LAs. The schools were selected to
be representative of those in England in terms of levels of social disadvantage
of pupil intakes and current attainment level of the schools because it was
hypothesized that context factors were likely to be relevant.

The research sought to describe and analyse influences on teachers’ profes-
sional and personal lives, their identities and effectiveness, and explore their
interconnections. It also investigated associations between the school contexts
in which teachers worked and these features. The study approximates to 
a complex sequential iterative MMR design (Tashakkori and Teddlie 2003)
involving several linked phases to create case studies of 300 teachers working
with classes of pupils in years 2, 6 and 9. The field work was conducted over
three consecutive academic years and collected a wide range of data through
interviews, questionnaire surveys and assessment data on pupils’ attainments in
English and mathematics. The focus on teachers working with pupils in years
2, 6 and 9 was deliberate because these are the years when pupils in England
undertake national assessments in three ‘core’ areas of the curriculum: English,
mathematics and science (at ages 7, 11 and 14 years).

The research sought to examine variations among the 300 teachers in their
relative effectiveness in promoting pupils’ academic progress. The research team
was able to collect pupil-level attainment outcome data from central DCSF
databases and link this with other data on individual pupils in the classes taught
by the teacher sample, including additional pupil baseline data on English and
mathematics tests selected by the project staff. This strategy of using national
datasets to obtain outcome measures had the advantage of reducing the research
demands on teachers and schools, an important pragmatic consideration in a
longitudinal study involving fieldwork with teacher participants (see Chapter 5
for more on longitudinal research). Even so, the project requirements over three
consecutive years involved a considerable commitment from participants. By the
third year some teachers and schools reduced their participation in the survey
and testing component, leading to incomplete data for some aspects of the 300
individual teacher case studies. The higher demands in terms of data collection
that may be required by longitudinal mixed methods designs in terms of
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participants’ involvement and resources required in EER studies need to be
balanced against the additional opportunities to examine both potential causal
effects and potential causal mechanisms as described earlier.

Detailed accounts of the research findings are presented in a number of
publications (Day et al. 2006; Day, Stobart et al. 2006; Day et al. 2007), and
an overview of the study and mixed methods approach to the research design
is given by Sammons et al. (2007). This section provides a detailed examination
of the use of mixed methods in the VITAE research and how the study sought
to move beyond integration of QUAN and QUAL approaches to contribute to
new knowledge of variations in teachers’ work, lives and effectiveness that can
be termed ‘synergistic understanding’. It is argued that the strength of integrated
approaches that result in synergy is that they ‘hold the potential for enabling
the consideration and combination of a greater range of differential data, thus
potentially providing opportunities for more nuanced, authentic accounts and
explanations of complex realities’ (Day et al. 2008: 330).

The use of mixed methods enabled investigation of a range of direct and
indirect contributory influences on teachers’ perceived effectiveness, how they
managed these influences in different contexts and whether there were associa-
tions between these and the measurable progress of their students – rather than
seeking only to identify particular cause-and-effect relationships. The study shows
how a mixed methods design and integration of data analyses and interpretation
through the combination of QUAN and QUAL approaches allowed the team
to explore both possible causal effects and causal mechanisms. Day et al. (2008)
demonstrate how the MMR team attempted to move from conceptual and
methodological integration to more synergistic understandings, which enabled
the discovery and delineation of key findings that were both more enlightening
and more robust than would have been the case if one method or another
(QUAN or QUAL) had dominated.

The main aim of the VITAE study was outlined in the tender specification
by DCSF: ‘To assess variations over time in teacher effectiveness, between
different teachers and for particular teachers, and to identify factors that contribute
to variations.’ It thus recognized the need for a longitudinal approach and
conceptualized teacher effectiveness as a dynamic concept. It also entailed an
assumption that teachers become more effective during their careers because the
tender document indicated that the DCSF wanted to understand how teachers
become more effective over time. This was an assumption that required testing
since previous research has suggested that neither teacher age nor years of
experience are necessarily predictive of teacher effectiveness in promoting pupils’
academic outcomes.

Key questions addressed were:

• Does teacher effectiveness vary from one year to another and in terms of
different pupil outcomes and do teachers necessarily become more effective
over time?
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• What are the roles of biography and identity?
• How do school and/or department leadership influence teachers’ practice

and their effectiveness?
• What particular kinds of influence does continuing professional development

(CPD) have on teachers’ effectiveness?
• Are teachers equally effective for different pupil groups or is there differential

effectiveness relating (for example) to pupils’ gender or socio-economic
status?

• Do the factors that influence effectiveness vary for teachers working in differ -
ent school contexts, or for different kinds of outcomes?

• Do factors influencing teachers’ effectiveness vary across different sectors
(primary and secondary) and different age groups (Key stage 1, 2 and 3)?

An extensive literature review was used to develop a clearer conceptual under-
standing of the dimensions of teacher ‘effectiveness’ at the start of the study.
This initial examination was extended to include other areas that emerged as
important themes as the analysis of the empirical data progressed, including the
concepts of: teacher well-being, professional life phases, identity, resilience and
commitment. These concepts became central to the research team’s under-
standing of the nature of different influences on and outcomes of variations in
teachers’ work and lives.

Data collection within VITAE brought together research in two areas: mainly
QUAN research on teacher (and school) effectiveness on the one hand, and
mainly QUAL research on teachers’ work and lives on the other. VITAE sought
to integrate these different perspectives in order to address better the central
research questions. It chose to focus on following the same teachers over three
successive years, with QUAN-derived measures of student outcomes (academic
and affective), relating to three successive classes/teaching groups. The issue 
of change over time in various aspects (teacher effectiveness, job satisfaction,
motivation and commitment) was explored using student attainment outcome
measures, students’ views, and teachers’ perceptions and accounts in initial
questionnaires and regular in-depth interviews. Figure 7.3 outlines the sample
design.

Two dimensions of effectiveness were investigated: perceived effectiveness
(relational) and relative effectiveness (value added). The main data concerning
perceived effectiveness were collected through twice yearly semi-structured, face-
to-face teacher interviews. Measures of teachers’ relative effectiveness were derived
from statistical analyses of pupil progress and attainment by matching baseline
test results at the beginning of the year, with pupils’ national curriculum results
at the end and exploring the influence of pupil background characteristics. This
enabled differences in the relative ‘value added’ to be analysed, using multilevel
contextual models that included adjustment for individual pupil background
factors (for example, age, gender, prior attainment and numerous other variables).
Pupil surveys were also conducted each year to gather their views of their schools
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and teachers, including features of school and classroom climate as well as
attitudes to school and learning. Data reduction techniques – Exploratory Factor
Analysis and Confirmatory Factor Analysis (CFA, see Chapter 12) – identified
underlying dimensions in the pupil questionnaire data. These were tested in
multilevel models to investigate the relationships between pupil attitudes and
dimensions related to school and classroom processes and variations in pupils’
academic progress in each of the three years.

ATTEMPTING METHODOLOGICAL SYNERGY

The demands of the VITAE research aims and questions necessitated an
integrated, sequential mixed methods approach involving the combination of a
range of research techniques, including approaches traditionally associated with
both post-positivist/QUAN and interpretive/QUAL paradigms. A longitudinal
perspective was needed to investigate variation over time with three years of data
collection. The main QUAL data collection were semi-structured, face-to-face
interviews, supplemented at various stages of the research by document analysis
and interviews with school leaders and groups of pupils, among others (see Box
7.2). The data were collected and analysed in an iterative and evolving process
consistent with the use of grounded theory methods. So, for example, guided
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Figure 7.3 Summary of VITAE sampling design (Day et al. 2006, 2007). Data on pupils’
views were collected by survey on a class or teaching group of pupils for each
teacher for three successive school years
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by a critical examination of the literature, an initial questionnaire for teachers
was developed. The analysis of data collected from this questionnaire plus the
literature review informed the development of first-round interview schedules
and further follow-up interviews. Group interviews with pupils added a QUAL
element to the study of pupil views to complement and extend the survey strand.
Here, focus groups were identified in 30 classes taught by teachers in the study
(approximately 10 per cent of the participating teachers). The focus groups pro -
vided the opportunity to follow up findings from analyses of the first year QUAN
analysis of the main pupil attitudinal questionnaire.

Additional narrative interviews were constructed drawing on the emerging
analyses of the first two rounds of QUAN and QUAL data to explore teachers’
retrospective perceptions of changes in their effectiveness and their interpretations
of the various factors that shape this over the longer course of their teaching
careers. Teachers were asked to construct a timeline indicating critical influences
on their perceived effectiveness, looking back over their career histories. This
retrospective element was necessary in order to gather the range of information
needed to address all the complex and potentially interrelated issues and concerns
of the study, and to provide a detailed and methodologically robust, rigorous
account of teachers’ work, lives and effectiveness. So while 300 individual teacher
case studies were the prime focus of the study, these were constructed using
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Box 7.2 Summary of data collection methods by participant group

Focus Method Participants

Teachers Questionnaire survey Year 2, 6 and 9 (maths and English)
teachers in all schools in sample LAs

Semi structured interview 300 case study teachers
Hierarchically focused interview 300 case study teachers
Narrative approach interview 300 case study teachers
and teacher worklines
Telephone interview 300 case study teachers

School Semi structured interview Headteachers, heads of 
leaders department, key stage leaders

Pupils Baseline and outcome measures: Years 6 and 9 (maths and English) 
NFER tests in English and pupils in classes or sets (year 9) 
mathematics taught by case study teachers
Baseline and outcome measures: Years 2, 6 and 9 (maths and 
National test data English) pupils
Attitudinal survey Years 2, 6 and 9 (maths and English)

pupils in classes or sets (year 9)
taught by case study teachers

Focus group interview Sub sample of years 2, 6 and 9
(maths and English) pupils



four main sources of evidence: teacher interviews, teacher and pupil question-
naires, and pupil assessment data. This combination of approaches provided
greater opportunities for mapping, analysis and interpretation to provide more
holistic understandings of the research area than would have been gained if relying
on a single paradigm.

The development of the teacher case studies involved qualitizing QUAN
evidence and quantitizing QUAL evidence, and allowed the integration and
eventual attempts at synthesis of the two in various ways, including full indi-
vidual teacher case studies, summary teacher profiles and ‘cameos or pen portraits’
via the creation of an overall teacher matrix for further exploration of associations
between key attributes (for example, teacher professional life phase, school
context, sector) and other concepts, including effectiveness (perceived and value
added), commit ment, resilience and identity. The strengths of the mixed methods
strategy included the professional learning of team members being enabled
through the iterative process of data collection, ongoing analysis, tentative
hypothesis generation and testing and interpretation of results.

The study faced various challenges, including the inevitable time lag on the
collection and analysis of cognitive outcome data; the capacity of the NVivo
computer package to handle the large amounts of qualitative data generated;
and the lack of complete data sets due to the voluntary nature of participation
and demands over three years. The pupil attitude and value-added data required
teachers to administer special baseline tests and pupil questionnaire surveys in
each year of three years of study. By the third year the teacher response rate to
these additional requests was reduced, reflecting the extra demands of involve -
ment in a longitudinal study and thus analyses of these data laid greater weight
on the first two cohorts of pupil data.

An illustration of the iterative nature of the ongoing integration of the QUAN
and QUAL mixed methods design is illustrated by the way VITAE changed its
conceptualization in response to emerging findings. The initial conceptual
framework was based on a model where teacher effectiveness was considered
central and was understood to relate to pupil attitudes, achievements and attain -
ments and to be affected by policy, pupils, and teachers’ personal and practice
factors. Following the analysis of an initial survey of all teachers in schools in
the seven LAs and the first round of interviews with the teacher sample (discussed
in more detail in Day et al. 2008), the team reassessed the initial conceptualization
and instead decided that teachers themselves should be seen as central to the
study. A second conceptual framework grounded in the emerging QUAN and
QUAL empirical data was thus developed, with teachers’ identities and pro -
fessional life phases viewed as key factors that might moderate their commit ment
and both perceived and relative effectiveness (see Figure 7.4).

The results from the multilevel statistical analyses (QUAN) of teachers’ relative
effectiveness were gained independently at first from the QUAL analyses of inter -
view data, but were later incorporated into the teacher case study profiles. These
were then used as one of several important attributes in subsequent QUAL
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analyses in order to understand the potential influences on variations in
effectiveness more fully. Discussion of this integration of data (not the integration
itself) led to the identification of two key features of teachers’ work and lives –
professional life phase and identity – that, together, contributed positively and
negatively to variations among teachers in relation to these features. Discussion
of the interaction between these led to hypotheses about their association with
teachers’ perceived effectiveness and, later in the research process, between teachers’
commitment and their relative effectiveness (measured by value-added analyses).

Three claims that emerged from the research illustrated the processes of
moving first to methodological integration and then attempts at conceptual 
and methodological synergy. Day et al. (2008) argue that neither QUAL nor
QUAN analyses in isolation could have led to these new understandings of the
links between teachers’ professional life phase, identity, commitment and their
perceived and value-added effectiveness:

Claim 1: Teachers in later phases of their professional lives are more vulnerable
in terms of sustaining their commitment to teaching.

Claim 2: Pupils of teachers who are sustaining or continuing to build their
commitment are more likely to attain results at or above the level expected,
regardless of school context.

Claim 3: Teachers do not necessarily become more effective in promoting their
students’ academic outcomes over time. A higher proportion of teachers in
later career phases, though still a minority, are likely to be relatively less
effective in promoting students’ academic outcomes.

The significant statistical results in the QUAN analyses of the VITAE research
supported the QUAL analyses of interview data on variations in teachers’ work
and lives over the three years of the field study and in the longer term from
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Figure 7.4 Teachers’ selves as factors influencing effectiveness
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narrative. When integrated, the data showed differences in commitment and
effectiveness between teachers in different phases of their professional lives. The
further association of these findings with those of teachers’ relative effectiveness,
however, suggested that not only are teachers in their late career phase at greater
risk of becoming less effective, but that effectiveness is closely associated with
commitment to teaching. Taken together, these three linked findings shed new
light on the ways in which teacher effectiveness, commitment and professional
life phase interact, and this drew attention to the important concept of teacher
resilience.

The longitudinal nature of the VITAE research also posed some challenges
in terms of continuity of project staffing and expertise as well as maintaining the
interest and participation of schools and teachers over an extended (four-year)
period. A further limitation of this study was a lack of funding for a proposed
classroom observation component, which meant that it was unable to explore
variations in this central dimension of teachers’ work and lives (see the discussion
of the ISTOF research below for an illustration of this important topic in studying
teacher effectiveness).

Despite the limitations, the VITAE team found benefits from the mixed
methods approach adopted. These included the development of research
relationships and understandings within the team through regular workshops
that focused on building shared understandings of data analyses, interpretation
and emergent themes and contained, within it, members with QUAL and QUAN
expertise and experience. The building of good will and mutual support and
learning proved to be key factors supporting the processes of conceptual and
methodological integration and synergy.

Development of the International System for Teacher Observation
and Feedback (Teddlie et al. 2006)

One of the families of MMR designs listed in Table 7.1 is sequential mixed
designs, which has a subfamily, iterative sequential mixed designs. These iterative
designs range from simple three stage designs (for example, QUAL → QUAN
→ QUAL) to increasingly more complex ones such as the International System
for Teacher Observation and Feedback (ISTOF), which had seven stages.

In developing ISTOF, Teddlie et al. (2006) used what has been called the
internet-based iterative sequential mixed methods design (IBIS-MM; Teddlie et
al. 2008). The particular IBIS-MM design used in this study was QUAL-QUAN-
QUAL-QUAN-QUAL-QUAN-MM in nature.

The research team came from 20 countries, and the study was conducted
from January 2004 through to August 2006. Pilot tests of the final version of
this instrument (Sammons and Ko 2008) are still ongoing in various participating
countries. Instead of a set of complementary research hypotheses and questions,
ISTOF consisted of a series of stages (with activities) that could be classified as
QUAN, QUAL or both. There were also three ‘organizational stages’ in ISTOF
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that could not be characterized as having a particular methodological orientation:
a preliminary stage, which involved assembling the international group of
researchers and developing the committee structure; developing a conceptual
framework for ISTOF; and generating the initial and final versions of ISTOF
(Teddlie et al. 2006).

Table 7.2 describes the activities (and the methodological approaches) for
each of the stages in ISTOF.

Seven stages and six internet queries were used to generate, in order, the
components, indicators and items associated with ISTOF:

• Stage 1: Query 1 asked the country teams to generate a list of components
of effective teaching with definitions. QUAL data were generated and
analysed using content analysis.

• Stage 2: Query 2 asked teams to rate (on 5-point scales) and rank 
order the potential components generated through Query 1 in terms of
importance. QUAN data were generated and analysed using generalizability
analysis.

• Stage 3: Query 3 asked the teams to generate a list of indicators (with
comments) associated with the components generated in the previous stage.
QUAL data were generated and analysed using content analysis.

• Stage 4: Query 4 asked teams to rate (5-point scales) the potential indicators
generated through Query 3 in terms of importance. QUAN data were
generated and analysed using generalizability analysis.

• Stage 5: Expert panels generated a bank of potential items for ISTOF.
QUAL data were generated.

• Stage 6: Query 5 asked the teams to rank order the potential items generated
through the work of expert panels in terms of relevance to the underlying
indicators. QUAN data were generated and analysed using generalizability
analysis.

• Stage 7: Query 6 asked the teams to comment on the structure and content
of the initial version of the teacher observation protocol using closed-ended
and open-ended responses. Mixed methods data were generated and
analysed. (See Table 7.2 for more details on these steps.)

IBIS-MM designs have a number of strengths due to the characteristics of
internet research and the iterative nature of sequential designs. The IBIS-MM,
as exemplified by the ISTOF study, had several particular strengths:

1 IBIS-MM designs provide an excellent opportunity for participants to work
with one another in situations where they cannot meet as a group. This
allows for more international research among scholars who would not
normally be able to convene at one location. The responses from multiple
countries in ISTOF resulted in TER meta-inferences that were more valid
internationally than previous research.

Applications of mixed methods  143



144 Different methodological orientations

Table 7.2 An example of iterative sequential mixed methods designs: the ISTOF QUAL
QUAN QUAL QUAN QUAL QUAN MM design

Stage Activity Methodological
orientation

Preliminary 1 Assemble international group of researchers; Not applicable
stage establish committee structure

2 Select country co ordinators, country team 
members, chairs of committees

Stage 1 1 Generation of potential components of effective QUAL
17 countries teaching – Query 1

2 QUAL analysis of narrative data – content analysis
Stage 2 1 Ranking and 5 point scale rating of potential QUAN
17 countries; components of effective teaching using Query 
257 individual 2 data
responses 2 QUAN analysis of numeric data – generalizability 

analysis
Interim stage – 1 Develop a conceptual framework for ISTOF Not applicable
Activities of 2 Refine components generated by Queries 1  
deductive and 2
committee
Stage 3 1 Generation of potential indicators of effective QUAL
16 countries teaching – Query 3

2 QUAL analysis of narrative data – content analysis
Stage 4 1 5 point scale ranking of potential indicators of QUAN
19 countries effective teaching – Query 4
213 individual 2 QUAN analysis of numeric data – generalizability 
responses analysis
Stage 5 Generation of potential items to assess effective QUAL
Activities of teaching (item bank)
expert panels
Stage 6 1 Ranking of potential items to assess effective QUAN
20 countries teaching – Query 5

2 QUAN analysis of numeric data – generalizability 
analysis

Development Generate initial version of the teacher observation Not applicable
of protocol protocol
by ISTOF 
committees
Stage 7 Query 6 Mixed
19 countries 1 Overall 5 point scale rating of first version of 

teacher observation protocol
2 Rating of items on initial version of teacher 

observation protocol
3 Final suggestions for altering items
4 QUAN and QUAN analyses of numeric and 

narrative data
Development Generate the final version of the teacher Not applicable
of protocol observation protocol
by ISTOF 
committees



2 IBIS-MM designs are designed to capitalize on a characteristic ‘ebb and
flow’ process in which inductive and deductive logic are used iteratively and
in sequence (that is, the cycle of research). This design type allows research
studies to evolve spontaneously on the basis of participants’ responses from
the previous round.

3 The IBIS-MM design employed in the ISTOF study allowed countries and
individuals who typically cannot participate in an international study to do
so, especially those from less developed or isolated locations. ISTOF included
participants from countries such as Argentina, Belarus, Chile, India, Malaysia
and Nigeria, whose points of view were heard on the international stage in
TER for the first time.

4 IBIS-MM designs can yield high participation rates, such as that recorded
for ISTOF. The participation rate across all phases of the project was
excellent, because the 20 research teams could respond online at their
convenience.

5 An unexpected side-effect of the ISTOF study was the increased communica-
tion among team members within the same country. This serendipitously
allowed for the further development of research traditions in countries where
they had not existed before.

The ISTOF pilot instrument developed by the MMR process described above
sought to address an important topic of both theoretical and practical importance,
namely the extent to which ‘more effective’ teaching practices can be described
and how generalizable or, by contrast, how differentiated they may be in different
contexts. By piloting an international instrument in a wide range of international
contexts it sought to establish what features of effective practice seem to ‘travel’
across countries and whether certain features are more evident in specific contexts.
It thus offers the prospect of furthering understanding of potential causal
mechanisms related to classroom practice, a key advantage of mixed methods
designs. Moreover, the instrument was intended to offer potential as a feedback
system that would be of practical value for teachers involved in its use and thus
can be seen as a valuable addition to future school improvement project designs.

Conclusions

This chapter argued that mixed methods approaches offer a valuable strategy
for incorporating greater use of QUAL methods into EER. This is seen as
important because there is a strong postpositivist QUAN orientation to much
of the current EER field. The use of mixed methods designs offers an alternative
to the existing QUAN or QUAL dichotomy, which still tends to divide the
school effectiveness and school improvement fields. Song, Sandelowski and Happ
(2010) describe a similar process in public health settings in which mixed 
methods intervention programmes introduce various types of QUAL research
into what had been exclusively QUAN-orientated experimental research (see also
Chapter 6).
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Early seminal SER studies such as Fifteen thousand hours (Rutter et al. 1979)
and School matters (Mortimore et al. 1988) used both QUAN measures to identify
and define the magnitude of school effects and also used QUAL approaches to
describe schools and classrooms in the research. However, it is argued that these
studies did not have access to the more recently developed mixed methods
approaches outlined in this chapter and thus did not fully integrate the QUAN
and QUAL elements, which were largely conducted in parallel. They thus did not
provide the kinds of meta-inferences and deeper understandings developed in 
later mixed methods SER studies such as the LSES (Teddlie and Stringfield 1993)
or the Forging links research (Sammons et al. 1997).

We suggest that one of the advantages of well-designed MMR is that it offers
the prospect of making stronger meta-inferences where QUAL and QUAN
components are specifically designed to complement each other and provide
‘mutual illumination’. Combining numbers and narratives illustrates the appeal
of mixed methods approaches, and this chapter provides a summary of different
mixed methods designs and the way mixed methods approaches can extend
existing knowledge bases through producing convergent and/or divergent results
and by combining the logic of justification (testing theories and hypotheses)
with the logic of discovery (to develop new theories and hypotheses). Illustrations
are provided of EER studies that have adopted mixed methods approaches to
achieve powerful new insights that move beyond integration of QUAL or QUAN
findings by a cyclical, iterative process that combines inductive and deductive
reasoning to achieve deeper, synergistic understandings of teachers, teaching and
learning processes and educational effectiveness.

Nonetheless, we recognize that there are potential weaknesses and limitations
involved in MMR. In particular, such studies are likely to involve greater expense
and often take longer to conduct. Moreover, they require QUAN and QUAL
researchers to develop their own understanding and knowledge of different
approaches and take time to work together to integrate findings and engage in
cyclical reviews of results in order to investigate phenomena more deeply, identify
convergent and divergent results and produce new insights.

While there is an important need in EER to test further existing and new
educational effectiveness models and the extent to which EER concepts and
theories are generalizable, we also argue the case for a ‘third way’ involving
pragmatic approaches that explore the extent to which relationships and concepts
may be context and time bound (differentiated). However, we believe that the
greater use of mixed methods designs offers interesting possibilities for the
further advancement and bringing together of the effectiveness and improvement
traditions.
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Using Item Response Theory
to measure outcomes and
factors
An overview of Item Response Theory
models

Norman Verhelst, CITO, The Netherlands

1 Introduction

In Educational Effectiveness Research, outcomes of educational practice as well
as possible factors associated with or influencing these outcomes are usually
formulated as rather complex concepts. This implies that EER has to make use
of theories of measurement in order to generate valid and reliable measures of
student outcomes and of different effectiveness factors that operate at different
levels.

The basic problem with educational measurement is that its outcomes – most
of the time the performance of students in some subject matter – are never
measured in a unitary operation, but come about by an aggregation of small
bits of information: the answers to small tasks are scored in a more or less objective
way, and the measure of the performance is the sum – weighted or unweighted
– of the scores on the constituent tasks, commonly referred to as items. The
collection of items administered to the students is referred to as a test, and the
sum of the item scores is the test score.

In Classical Test Theory, the basic observation at student level is the test
score, and one could say in a fairly general way that the basic objective of EER
is to explain – in a statistical way – the variability of the test scores or, even
more generally, the covariance structure of the test scores if they are multivariate.
As a theory of test scores, however, Classical Test Theory is rather weak since
the only concept it uses is the so-called true score, which is of a statistical nature:
an observed score is the sum of its average (under an infinitely large sample of
equivalent test administrations under the same conditions) and the deviation
from the observed score to this average. The average is the true score, and the
deviation is the measurement error. However, this decomposition between
average and deviation to the average holds for any test, whether its composition
(the items) is well considered or completely arbitrary, whether the items measure
the same concept or are completely chosen at random from an arbitrary collection
of domains. Classical Test Theory, as a statistical theory, is not concerned with
the meaningfulness of the composition of a test; it has almost no rules on which
a decision to include or exclude a particular item in a test can be based.
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In modern test theory, as it is sometimes called, the concept to be measured
takes a central place. In many applications it is conceived as a continuous,
unbounded variable (that is, running from minus infinity to plus infinity), which
is not directly observable – hence the term latent variable. The observable variables,
the answers given to the items, are considered as indicators of the latent variable.
Roughly formulated, this means that a correct answer to a mathematics item is
considered as a sign or indicator of higher mathematics ability than an incorrect
one. The precise meaning of the expression ‘is an indicator of’ is the definition of
the models that are studied in the area of Item Response Theory (IRT). In the
sections that follow, some examples will be treated in a detailed way. For now, it
is important to emphasize that an IRT model is a hypothesis about the behaviour
of students, and that such a hypothesis needs an empirical test. To understand the
nature of such empirical testing, however, it is necessary that the model itself is
understood in a correct way, and that the deductions from the model definition
are derived in a correct way. This makes the use of IRT models a non-trivial
undertaking. An overview of the logical steps to be taken when using IRT
modelling is given below:

• IRT models rest upon a set of assumptions and formulate the ‘indicator
function’ of an item response in a probabilistic way: they express the
probability of a correct answer to an item as a mathematical function of the
underlying ability. This function is specific for each item, and the dependence
on the item is expressed by the use of one or more parameters per item.
These functions are referred to as item response functions (IRFs) and usually
belong to the same family. It is important to understand that IRT models
do not specify the answer to the items, but only the probability of the possible
answers – that is, IRT models are probabilistic models.

• In the formulation of the model, parameters are introduced as formal entities,
but in any application a value has to be assigned to these parameters.
Assigning values to the parameters on the basis of the observed responses
is known as parameter estimation. Procedures for parameter estimation are
usually quite complicated. In the present chapter, only the most important
principles of the estimation procedures are discussed. For technical details,
the reader is referred to specialized literature. The important point to be
retained from the parameter estimation procedure is that it does not reveal
the ‘true’ value of the parameters, only estimates become available and these
estimates have an estimation error. The order of magnitude of these errors
is usually expressed by the standard error.

• From the assumptions of the model, a plethora of predictions about the data
follow. As an example, take the correlations between the item answers. If the
parameters of the model are known, all correlations can be predicted exactly.
If the parameters are known approximately, then the correlations are also
known approximately. In either case, the observed correlations can be com -
pared to the predicted ones, and the validity of the model is judged by the
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correspondence between predicted and observed correlations. The judg ment
of the quality of the correspondence (is it good or not good enough) is usually
done by a statistical test. The generic name for such statistical tests is
goodness-of-fit tests. There are two problems associated with the use of
goodness-of-fit tests, which should be distinguished carefully:

– Are the statistical tests proposed in the literature genuine statistical
tests? Is the real statistical significance level equal or approximately equal
to the nominal one? Sometimes the construction of statistical tests is
quite complicated, due to the fact that the predicted statistics (the
correlations in the above example) are based on parameter estimates,
which are in turn estimated from the same data that are used in 
the statistical test itself. Ignoring this dependence may invalidate the
statistical testing procedure. This problem will be touched upon in 
the next chapter, but the theory will not be explained in much detail,
because of its quite complicated technical nature.

– The other problem requires much more involvement from the applied
researcher than the first one. Referring to the example above, the
important question is why one should pay attention to a good prediction
of the item correlation matrix. This question has two sides. If the
correspondence between observed and predicted correlations is good,
one has some evidence on the validity of the model, but it would be
a mistake to think that a good prediction of the correlations is all there
is that can be said about the validity of the model. There may exist
other defects in the model that are not detected by an investigation of
the correlations, but that may appear if other aspects of the data are
predicted. In statistical terms, it is said then that the test on the
correlations has little or no power to detect these other defects. On the
other hand, it may be the case that the goodness-of-fit test detects a
poor prediction of the correlations, but that this defect is not important
for the purpose of the study. Suppose as an example that the study is
set up to find out whether two different instructional methods lead to
different outcomes in a mathematics test. In such a case it is hardly
imaginable how the poor prediction of the item correlations could
invalidate in any serious way the conclusion that method A is better
than method B, say. In more general terms, this latter problem is
referred to as robustness: to what extent can we tolerate a defect in the
model without jeopardizing the conclusions of our research?

• An important logical step in using IRT models (or for that sake, any model)
is the decision to accept or to reject the model as a vehicle for drawing
substantive conclusions. Although the choice is presented as binary, it is
seldom applied in such a rigorous way. Complete rejection may mean
complete failure of the research, which is seldom acceptable or justifiable.
In many cases, the defect can be repaired by appropriate actions such as
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deleting part of the items or deleting part of the student sample from the
study. Similarly, acceptance is not a synonym of a perfect model: if some
evidence can be provided that the substantive conclusions from the study
are not affected seriously by an imperfect model, the model could be used
anyway. It is important, however, that partial failures or actions such as
deleting part of the item material are well documented. Such documentation
can be the source for new ideas, be it in the substantive field of the research
questions, or in the psychometric modelling.

• Logically, the last step in applying formal models for measurement is to use
them in actual measurement. To assess whether the ability in some domain
is associated with curricular, personal and external factors, it seems necessary
that this ability can be measured in a faithful way. Therefore, the establish-
ment of a trustworthy measurement instrument takes logical precedence 
over the assessment of the relative influence of all factors of interest.

The application of these five logical steps is not always easy, and may impose
some restrictions on the available measurement models. The logical steps
represent a separation of the measurement model and the structural model (as
in SEM, see Chapter 12), and an important question is whether it is possible
to assess the validity of the measurement model without assuming anything about
the structural model – that is, without making any substantive assumption about
the distribution of the latent variable in the population of interest.

As an example, consider again the case where the main substantive question
is to know which of two available instructional methods are associated with the
highest level of mathematics ability in two groups of students. As a measurement
instrument, a mathematics test is used. The question that is addressed here is
whether a thorough analysis of the measurement instrument can be reached
without assuming (for example) that the ability in the two populations is normally
distributed, or that the ability distribution in both populations has the same
variance. Some other important questions are stated below:

• Is it important that the samples from the two populations are simple random
samples, or can the sampling be done in several stages (first a sampling of
schools and then a sample of students within schools)?

• Will the intra-class correlation influence in a systematic way the outcomes
of the measurement analysis?

• What if we use only a convenience sample to analyse the measurement
instrument?

• What if there is a difference between the two instructional methods, but
there is also a substantial difference due to gender, and on top of that, there
might be an important interaction effect of gender and method?

In the preceding paragraphs, a number of serious problems have been raised,
but what does one win if the logical steps are followed as described and the
outcomes of the analysis are on the whole quite positive? Apart from the general
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methodological requirements to show the validity of inferences based on test
results, there is one big advantage in the use of the IRT methodology: as the
concept to be measured is central in the theory, and as the item answers are
only indicators, it follows that different indicators (of the same concept) can be
used for different students or groups of students. This means that the measure-
ment instrument does not need to be the same for all students, or from the
viewpoint of the total collection of items, it means that data can be collected
in an incomplete design. In terms of the above example, it means that the
mathematics ability in population A can be assessed by a test that is different
from the one used in population B, and still yield valid comparisons of the ability
in both populations. This invaluable advantage does not hold in the framework
of Classical Test Theory.

In this context, Chapters 8 and 9 will roughly follow the logical steps described
above. This chapter will be restricted to an overview of IRT models that can be
useful in EER. Section 2 is devoted to the most elementary model in IRT, the
Rasch model. This offers the possibility to introduce a number of key concepts
that appear throughout the IRT literature. Section 3 discusses two generalizations
of the Rasch model, the two- and the three-parameter logistic models, and in
Section 4 the family of normal ogive models is introduced. All these models
were originally introduced to describe responses on binary items. In Section 5,
extensions to items with more than two categories are discussed. Section 6, finally,
discusses the relationship between IRT models and factor analysis. Parameter
estimation and statistical testing of the goodness-of-fit of IRT models are rather
involved and technical. They are treated in some detail in the next chapter. Using
the results of an IRT analysis in actually doing EER is complicated as well. Thus,
Chapter 9 also provides some suggestions on how researchers in the field of
educational effectiveness can make use of IRT to develop further not only the
methodology of EER but also its theoretical framework.

2 Basic concepts

2.1 Guttman’s scalogram

A basic idea of IRT models is that the answer of a student v to an item i reflects
in some respect a relation between the student and the item. If the answer is
correct, this is an indication that the student dominates the item. If the item 
is about mathematics, then a correct answer indicates that the student has more
ability than required by the item; if the answer is incorrect, the item dominates
the student, meaning that the student has less ability than required by the task.
Using terms such as ‘more’ and ‘less’ implies an order relation, and a geometric
representation of this order is the use of a directed line or dimension, where
the terms of the comparison are represented as points. This idea is due to
Guttman (1950) and is the basis of scalogram analysis. The idea is displayed
graphically in Figure 8.1: the horizontal line represents the ability continuum,
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the vertical lines correspond to the position of the items i, j and m and the
letters v, w, y and z represent the positions of four students. The relative positions
of the letters to each other represent the dominance relation: the right-most
position reflects the higher ability.

The theory of scalogram analysis amounts to the following:

• If the positions of student and item points are known, then the behaviour
– the item answer – is known: if a student position dominates the item
position, then the answer is correct; otherwise it is incorrect. This means
that Guttman’s model is deterministic.

• Items and students are positioned on the same continuum. From the view-
point of the student the position reflects his ability; the position of the item
reflects its difficulty, but unlike in Classical Test Theory, the difficulty does
not represent a proportion of correct answers in some population; it reflects
the required ability to grant a correct response.

• The theory is testable. In Figure 8.1, there is no point on the continuum
that dominates the position of item j and that at the same time is dominated
by the position of item i. Or, in behavioural terms, it is not possible to give
a correct answer to a difficult item and an incorrect answer to an easier
item. With a test of three items, it follows that there are only four response
patterns possible: (0,0,0), (1,0,0), (1,1,0) and (1,1,1), represented in Figure
8.1 by the letters v, w, y and z respectively. In the general case with a test
of k items, only k + 1 different response patterns are allowed, while the
number of possible answers is 2k. Guttman’s theory leaves no room for
‘errors’, and consequently, it has to be rejected in most of the cases.

• A scalogram analysis amounts to finding the correct order of the items and
students from a given data set. The result is an ordinal scale, and scale values
given to students can only be used as ordinal numbers. Assigning the values
1, 2, 3 and 4 to the students v, w, y and z reflects their ordering in ability,
but the same ordering is reflected by the scale values 1, 7, 32 and 107, and
there is nothing in the theory that justifies the preference of one above the
other.

The vulnerable aspect of Guttmans’s theory is its deterministic character. In
probabilistic terms, it only uses probabilities of zero and one: if the item
dominates the student, the probability of a correct answer is zero; otherwise it
is one. Most IRT models in use can be seen as a relaxation of this deterministic

158 Different methodological orientations

i

v w y z

j m

Figure 8.1 Graphical representation of scalogram analysis



feature, as they describe in much detail the probability of a correct answer as a
function of the relative position of student and item points on the ability
continuum. A simple model is described in the next section.

2.2 The Rasch model

In Figure 8.2 a graphical display of the Rasch model (Rasch 1960) is shown. 
The horizontal axis represents the ability dimension, named �, and exactly as in
Guttman’s model each student is represented by a point on this dimension. For
each point on the line, the model expresses the probability of a correct response
to each of the items in the test; so for each item there is curve associating the ability
point to the probability of a correct answer. This curve is known as the item
characteristic curve, or item response curve. (In the older literature, the term ‘trace
line’ is used as well.) Each curve is the graphical display of a function, known as
item characteristic function or item response function (IRF). The point on the 
�-scale that yields a probability of 0.5 for item i is labeled by a special symbol, �i.
In a general description of the model, the exact position of this point or,
equivalently, its value is not known, but has to be estimated from the data. The
quantities �i for each item are referred to as item parameters.

There are a number of features in Figure 8.2 that also appear in other IRT
models, or are distinctive for other models. They are discussed in turn:

• The IRFs are monotonically increasing, or in behavioural terms, the higher
the ability the higher the probability of a correct response. This seems quite
natural in achievement or ability testing, and all IRT models used in this
area of research have this feature. In the area of attitude and preference
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research, single peaked IRFs are used sometimes, that is, functions that are
increasing up to some point on the scale and then decrease. Single-peaked
functions also appear in the area of achievement testing, and some of these
will be discussed in the next section; these functions, however, are not IRFs.

• In the model definition, the scale values are unbounded: they range from
minus infinity to plus infinity. This feature is common to all IRT models.

• The probability of a correct answer on any item is different from zero and
one, but as � increases without bound, the probability of a correct answer
approaches one, and if it decreases without bound, the probability approaches
zero. One says that zero and one are the lower and upper asymptotes
respectively. This feature, especially about the lower asymptote, has been a
source of a lot of criticism of the Rasch model. It will be discussed in more
detail later.

• Item response curves in the Rasch model do not intersect: for all points on
the ability scale it holds that item i has the highest probability of a correct
response and item m the lowest one. Moreover, all curves in Figure 8.2
have exactly the same form; they differ only in location. Any curve in the
figure can be shifted horizontally until it coincides completely with either
of the other two.

These features jointly, however, do not define the Rasch model, as there can be
many different mathematical functions that have the same features. In the Rasch
model, the IRFs are defined as:

(1)

which is an increasing function of � that depends on a single parameter �i. (The
expression exp(x) is just a convenient way to write down the exponential function
ex, where e is the base of the natural logarithms and equals approximately 2.718.
Notice that e 0 = 1.) The function fi(�) is a conditional probability. If we denote
the outcome of an answer to item i as Xi, then the meaning of the IRF becomes
clear:

fi(�) = P(Xi = 1|�). (2)

Since the outcome of an item answer is binary, yielding the value one if the
answer is correct and zero otherwise, we immediately deduce from (1) and (2)
that

(3)
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There are some interesting ways to look at the IRF defined by (1).

• The curves in Figure 8.2 are very similar to the curves of the cumulative normal
distribution, but they are not representing the normal distribution. They
represent the cumulative logistic distribution, which is similar to the normal
distribution: it is symmetric, but has thicker tails than the normal distribution.
The standard logistic distribution has a mean of zero and a variance equal to
�2/3. A normal distribution with a mean of zero and a standard deviation 
of 1.7 is very similar to the standard logistic distribution. The function in
equation (1) is known by the name ‘logistic function’. Its argument is the
difference � – �i.

• Since the outcome variables Xi are binary, the expected value equals the
probability that the outcome equals one:

E(Xi |�) = 0 × P(Xi = 0|�) + 1 × P(Xi = 1|�) = fi(�).

This means that the IRFs are regression functions of the outcome variables
Xi on the latent variable �. The regression is not linear, as can be seen clearly
from Figure 8.2.

• An interesting function is the logit function or the log-odds function. It is
given by

which is linear in �. Generalizations of the logit function are useful to
understand the structure of other, more complicated models.

• The right-hand sides of equations (1) and (3) are fractions with the same
denominator, meaning that this denominator does not depend on the specific
value of the outcome variable Xi. The denominator is the sum of both num -
erators; clearly its function it to make sure that the sum of the probabilities
of all possible outcomes equals one. This denominator is also called the
normalizing constant. Therefore we can write (1) and (3) equivalently as

P(Xi = 1|�) � exp(� – �i) (1a)

and

P(Xi = 0|�) � 1, (3a)

where the symbol � means ‘is proportional to’. The normalizing constant
is one divided by the sum of the right-hand sides of (1a) and (3a).
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Conditional independence

The Rasch model is not completely defined by its IRFs. These functions describe
the marginal distribution of the outcome variables Xi, conditional on �, but
from these marginal distributions the joint distributions cannot be derived
uniquely. To put it more simply: from (1) one cannot specify the probability
P(Xi = 1 and Xj = 1|�). Therefore, something more has to be added to the
model to make it fully defined. This addition has the form of an assumption
that is ubiquitous in statistical modelling: the assumption of conditional
independence or local stochastic independence, the term ‘local’ pointing to the
fact that the latent variable is fixed. Let a test consist of k items, and let X =
(X1, . . . , Xk) be the vector of outcome variables, also called the response pattern.
Let x = (x1, . . . , xk) be a realization of X, that is, x is some observable response
pattern. The assumption of conditional independence states that

(4)

for all possible response patterns x. This assumption is analogous to the axiom
of independent measurement errors in Classical Test Theory. Notice that this
assumption does not say that item answers are independent and hence correlate
zero; it says that item answers are independent in all populations where the
latent variable � is constant, and hence that correlations between item responses
are zero in such populations. However, this means also that if, in some popula -
tion, item responses do correlate, that this correlation is explained (completely)
by the variation in the latent variable �. In this sense, the Rasch model is very
similar to the one-factor model. The relation between factor analysis and IRT
models will be discussed further in Section 6.

Exponential families

Apart from the conditional independence, there is another principle of indepen-
dence that applies, namely, experimental independence. This principle says 
that test performances, given the latent abilities of a group of students, are inde -
pendent of each other. As an example consider a sample of n students, and
denote the latent ability of a single student v by �v. The item responses of the
n students to a test of k items are collected in an n × k matrix X with the rows
representing students and the columns corresponding to the items. X is a multi -
variate random variable, which on administration of the test will take particular
values or realizations. These realizations are indicated by x. The v-th row of X
and x will be denoted as Xv and xv, respectively, and individual elements as Xvi

and xvi. The principle of experimental independence states that

(5)
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Substituting the right-hand side of equation (4) into equation (5) gives as a
result:

(6)

and using (1) and (3) one finds that

(7)

The probability of the observed data, considered as a function of the unknown
quantities �v and �i, is called the likelihood function. Defining

and taking the logarithm of (7) gives

(8)

The right-hand side of equation (8) consists of two important parts: the two
sums that contain functions of the data (sv and ti), and the double sum, which
is independent of the data. Each term in the first two sums consists of a product,
one factor being a function of the unknown quantities in the model (�v and
–�i) and the other factor a function of the data (sv and ti). Models for which
the log-likelihood function can be written in this form are referred to as
‘exponential family models’. Such models have attractive features that are used
in the parameter estimation procedures to be discussed in the next chapter.

The quantity sv is the row total of row v of the observed data matrix x, and
ti is the column total of the i-th column. From (8) we see that the likelihood
of the observed data depends on the data only through its marginal sums, or,
equivalently, that under the Rasch model, all observed matrices with the same
marginal sums are equiprobable. This means also that anything we can learn
about the latent ability of student v is contained in this row sum sv, which is
called the ‘sufficient statistic’ for the unknown quantity �v. Similarly, the column
sums ti are the sufficient statistics for the item parameters.

This section is concluded with a general consideration of the notions of
independence that have been discussed so far. It may seem that the Rasch model
(and, in fact, any of the other models that will be discussed subsequently) is
unrealistic, as any researcher in the area of EER knows that test data may show
substantial dependence, due, for example, to school or classroom effects. There
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is, however, no contradiction in this because equation (7) describes a conditional
probability, where the condition is the collection of latent values represented in
the sample. Roughly formulated, the axiom of conditional independence means
that each new item is a new opportunity to show one’s ability, and that the
probability of success does not depend on failures or successes on other items.
The principle of experimental independence means simply that students have to
work alone and independently of their classroom peers. The lack of independence
often encountered in EER is due to the effect of using a sampling scheme different
from simple random sampling, such as cluster sampling. In terms of equation
(7), this means that the students and, consequently, their latent abilities are not
independent of each other, but this dependence is a dependence in the condition
of the conditional probability, not in the outcome variables. Or to put it slightly
differently, equation (7) is assumed to hold, no matter how the sample of the
n students has been drawn.

3 The two- and three-parameter logistic models

The models to be discussed in this section can be considered as generalizations
of the Rasch model, although, historically, they were not developed as such. In
many discussions, criticism of the Rasch model mostly points to two severe
restrictions in the model, and the two models to be discussed are ways to cope
with these criticisms by introducing more complicated models.

3.1 The two-parameter logistic model

In the Rasch model, each item has one parameter �i, commonly referred to as
the difficulty parameter. From elementary techniques in Classical Test Theory
it is well known that items do not differ only in difficulty but also in discrimi-
nation. In the Rasch model, there is no possibility to make the items differ in
discrimination. In Figure 8.3, two response curves are displayed for items i and
j, both having the same difficulty, but they differ in discrimination in the following
sense: imagine two students with a latent ability in a small neighborhood of the
common difficulty parameter of the two items – that is, where the two curves
cross, one being a bit lower, the other a bit higher. With item i the difference
in probability of success for the two students is quite small (this difference is
displayed as the distance between the two dashed lines on the left vertical axis),
while with item j the corresponding difference is much larger (refer to the right
vertical axis), meaning that item j discriminates better than item i. This difference
in probabilities is associated with the steepness of the two curves in the
neighborhood of the difficulty parameter.

To grasp this difference in a mathematical expression, one needs an extra
parameter. The IRF for this generalized model is given by
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The larger the parameter �, the steeper the curve is. This parameter is commonly
referred to as the discrimination parameter. The function in (9) is also a logistic
function; its argument is �i(� – �i). The model with IRFs given by (9) is known
as the two-parameter logistic model (2PLM).

It may be interesting to see what happens if the discrimination parameter
becomes very large. Taking limits of (9) for �i → � gives different results,
depending on the sign of the difference � – �i:

lim�i→� P(Xi = 1|�) = 1 if � > �i,

lim�i→� P(Xi = 1|�) = 0 if � < �i.

This means that with a very large discrimination parameter the item behaves as
a Guttman item.

The log-likelihood function for this model is given by

(10)

where the sufficient statistic for the difficulty parameters is ti = 	vxvi, as in the
Rasch model, and

the weighted score – that is, the sum of the discrimination parameters of the
correctly answered items by student v. However, this weighted sum is not a
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mere statistic, that is, a function of the observed data; it also depends on the
unknown discrimination parameters, and therefore the 2PLM is not an expo-
nential family model. If one knows the value of these parameters, or treats them
as known constants (by hypothesis, for example), then the model becomes an
exponential family model. More on this will be said in the section on parameter
estimation in the next chapter.

3.2 The three-parameter logistic model

A serious criticism of the Rasch model and the 2PLM is that these models are
not capable of describing accurately the behaviour of students in tests where
some or all of the items have a forced choice format, such as multiple choice
items. If the ability is very low, both models predict a success probability very
near zero, but correct answers may come about by some guessing strategy. If
the item is a multiple choice item with four alternatives, picking an alternative
at random will guarantee a success probability of 0.25. Formally, this is handled
by adding another parameter to each item, which changes the lower asymptote
from zero to some positive (but unknown) constant ci. The IRFs for this model
are given by

(11)

The parameter ci is known as the guessing parameter, and the parameters �i and
�i are the discrimination and difficulty parameters just as in the 2PLM. This
model is known as the three-parameter logistic model (3PLM), although the
IRF defined by (11) is not a logistic function. In Figure 8.4 the item response
functions are displayed for two items, i and j, having the same discrimination
and difficulty, but ci = 0 and cj = 0.25. The location of the difficulty parameter
is indicated by the dashed line.

Notice that in this model, the difficulty parameter no longer has the elegant
interpretation as the ability that grants a 50 per cent probability of a correct
response. If the right-hand side of (11) is evaluated at the point � = �i , the result
is (1 + ci)/2, which, in the figure, yields 0.5 for item i and 0.625 for item j.

When it comes to a choice between the Rasch model, the 2PLM or the 3PLM,
the problem seems to be trivial: as the latter model is the most general, it will
(by definition) fit the data at least as well as the other two. Along this line of
reasoning, it has even been proposed to use the so-called four-parameter logistic
model, which has on top of the three parameters per item present in the 3PLM
also an extra parameter to shift the upper asymptote away from one. The rationale
for this parameter is to explain carelessness errors, for cases where the correct
answer is ‘known’ almost certainly, but for some reason (carelessness, for example)
it is not written down. However, the unbridled growth in complexity of models
by adding more and more parameters has its price, in at least two respects:
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• Commonly the parameters are estimated from a single data set, which
consists just of a table filled with ones and zeros. Adding parameters to the
model means adding more sources of insecurity (about their ‘true’ values),
but the amount of information one has available to solve this insecurity
remains the same. The consequence will inevitably be that the standard errors
of the estimates will increase as the number of parameters increases, and
even worse, the correlations between (some) parameter estimates will tend
to become very high (in absolute value). This is the case, for example, 
in the 3PLM, for the guessing parameter and the difficulty parameter of
the same item: their estimates show usually a high negative correlation,
suggesting a trade-off between guessing and difficulty.

• The second aspect bears more on the construct validity of the model, or
formulated more accurately, on the inferences one can make from the model.
Here is an example. Suppose the 3PLM is applied with a test of 100 items,
and the guessing parameters have estimates all close to 0.25. If some student
has answered correctly about one quarter of the items, one might be tempted
to say that this student has really guessed on all items. However, there is
no direct evidence of this; nobody has ‘seen’ this student guessing, and
maybe the student knew the answer to 25 of the 100 items, has guessed
(incorrectly) on some others and had a misconception about the remaining
ones, all leading to an incorrect answer. If one sticks to the simple table
with ones and zeros as the only observation to be analysed, the processes
having led to these answers are caught in a black box, and there is no evidence
beyond the match of the model to these data to make further inferences.
But, strictly speaking, the model is nothing else than a formal description
of the data in statistical terms, and one should not overplay one’s hand 
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in drawing substantive conclusions from such a description; much more
convincing evidence would be obtained by an interview of the students on
how they came to their answers.

4 Normal ogive models

4.1 Derivation

In the Thurstonian tradition of scaling, the normal distribution has been used
extensively to model unexplained variation in responses. When the observed
behaviour is discrete or binary, an underlying, not observed continuous response
variable is assumed to operate, together with a kind of boundary or threshold.
The observed or overt response then is thought to come about by a comparison
of the unobserved continuous response to the threshold. This is exemplified in
Figure 8.5. When answering an item, a latent response, z, is drawn from a normal
distribution with standard deviation equal to one. The mean of this distribution
is the ability of the student. The item defines a threshold, �i, and the overt
response is correct if the latent response is greater than the threshold.

The probability that the answer is incorrect is given by

(12)

where 
(.) denotes the standard normal distribution function. The IRF for the
model is then readily found by using the symmetry of the normal distribution:

P(Xi = 1|�) = 1 – 
(�i – �) = 
(� – �i). (13)

The graph of the function 
(.) is known as the normal ogive, and it looks very
similar to the curves in Figure 8.2.
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4.2 The one- and two-parameter normal ogive
models

When the above derivation applies equally to all items, the one-parameter normal
ogive model results. The main feature of this is that it is assumed that for every
item the standard deviation of the latent responses is equal. The two-parameter
model is obtained when it is assumed that the standard deviations of the latent
responses may vary across items. Representing these standard deviations by �i,
one finds readily that

(14)

The graphs of these functions are steeper the smaller the standard deviation is,
meaning that the inverse of the standard deviation has the same interpretation
as the discrimination parameter in the 2PLM. Defining �i = �i

–1, one finds the
standard expression for the two-parameter normal ogive model:

P(Xi = 1|�) = 
[�i(� – �i)]. (15)

4.3 Relation between logistic and normal ogive
models

The derivation shown for the normal ogive models can also be applied to the
Rasch model and the 2PLM, although historically, this does not seem to have
been done. The only difference is that the normal distribution is replaced by
the logistic distribution. Using the function symbol �(.) for the logistic distribu-
tion function, we then find an expression for the 2PLM analogous to (15):

P(Xi = 1|�) = �[�i(� – �i)]. (16)

Although the two distribution functions 
(.) and �(.) have very similar graphs,
the graphs will be quite dissimilar if in (15) and (16) the same values are used
for the parameters �i and �i. The reason for this is that the standard logistic
distribution does not have a standard deviation equal to one. A close similarity
is found if the discrimination parameter in the 2PLM is 1.7 times the
discrimination parameter in the two-parameter normal ogive model; the difficulty
parameters can be treated as equal. This gives


[�i(� – �i)] � �[1.7�i(� – �i)].

The scale factor 1.7 is often found in textbooks treating the 2PLM and the
3PLM. In Figure 8.6, a graph of both IRFs is given for the interval (0, 3) with
�i = 0 for both models; the discrimination parameter for the normal model
equals one, and for the logistic model it is 1.7.
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As the differences are very small, it might be concluded that the models 
can be used interchangeably, and for practical purposes this is undoubtedly the
case. Nevertheless, models of the logistic family have been more popular than
the normal ogive models in the history of modern psychometrics. At least two
reasons can be given for this. First, the mathematics needed to study the
characteristics of the models are easier and more elegant in the logistic family
than with the normal models. A thorough study of the 2PLM and the 3PLM
can be found in the influential book by Lord and Novick (1968), especially the
contributions of A. Birnbaum. The great attention that IRT has got in Europe
is certainly due to the important work of Rasch (1960) and the pioneering work
of Fischer. Both these authors have spent a lot of effort demonstrating that the
Rasch model follows necessarily from a few requirements that can be attributed
to objective measurement. The interested reader is referred to Fischer (1974,
1995) for a detailed (and often quite difficult) discussion on these topics.

In the 1990s, renewed attention was given to the normal ogive models.
Estimation techniques based on sampling procedures, such as the Gibbs sampler,
became popular and feasible due to the increasing computing speed of modern
computers. It appeared that these techniques were easier to implement with the
normal ogive models than with models from the logistic family.

5 Models for polytomous item responses

Sometimes observations are categorized in more than two categories, such as
correct and incorrect. If the items allow for more than two categories, they 
are called ‘polytomous’. For polytomous data one distinguishes ordered and
unordered polytomies. Unordered categories correspond to nominal data. An
example is offered by multiple choice items, where each alternative just represents
a nominal response category. Instead of merely dichotomizing these categories
as either correct or incorrect, one might assume that different alternatives give
different information about the underlying ability.

1.0

0.5
0 1 2 3

Normal

Logistic

Figure 8.6 Similarity of the normal ogive and the logistic models
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Commonly, however, the different response categories are considered as
ordered categories; in that case one has an ordered polytomy, where the categories
are usually labelled as 0, 1, 2, . . . The ordering is with respect to the underlying
ability: it is assumed that obtaining a ‘1’ is an indication of a higher ability than
obtaining a ‘0’; ‘2’ indicates a higher ability than ‘1’, and so on.

In this section, a model for unordered categories is briefly discussed – Bock’s
(1972) nominal response model. Two models for ordered categories, the partial
credit model and the graded response model will be discussed thereafter.

5.1 The nominal response model (NRM)

The discussion on this model serves two functions. First the model is interesting
enough in itself to devote some attention to it. It shows how very unstructured
data, just observations in nominal categories, can be treated in a way that allows
one to draw quantitative inferences. Second, the model offers a good opportunity
to discuss some identifiability problems present in all IRT models that were not
mentioned in the previous discussions.

Suppose a test consists of k items, and the responses to each item are classified
in a number of categories. This number can differ across items. The number of
categories for item i is denoted as mi, and it is assumed that mi  2. Furthermore,
it is assumed that all responses can be considered as indicators for the same
latent ability �. If there are more than two categories, then the concept of an
IRF does not make much sense; in such cases models specify the probability
that a certain category will be chosen as a function of the underlying variable
�. These functions are called ‘category response functions’. In the nominal
response model, these functions are given by

P(Xi = j|�) � exp[�ij(� – �ij)], (j = 1, . . . , mi), (17)

where the expression Xi = j means: the answer to item i belongs to category j.
To find the exact probabilities, one has to determine the proportionality constant,
which is one divided by the sum of the mi expressions specified in (17). Notice
that in this model, unlike in the 2PLM, there are no positivity restrictions on
the �-parameters.

There are three different reasons why this model is not identified as it is
specified in (17). One reason applies to each item separately; the other two apply
to all items jointly. We discuss them in turn.

If we consider the ratio of the probabilities for two categories of the same
item, the normalizing constant cancels, since it is common for all categories.
Now consider the ratio of the probability for category j to the probability for
some other category r:

(18)
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Defining

�*ij = �ij – �ir,

and

�*ij = �
�ij, if �ij = �ir,

one finds that

(19)

Together with the restriction that the sum of the probabilities of all mi equals
one, it follows that (19) defines an equivalent NRM as (17). Moreover, for the
reference category r, it holds that the denominator of the right-hand side of
(19) is no longer dependent on �, which implies that air = 0. The reference
category can be chosen freely among the categories of the item, and across items
this choice is completely arbitrary.

However, if we do this, then we find that P(Xi = r|�) � 1, which also means
that the location parameter �ir has disappeared completely from all expressions;
it simply does not exist anymore. So, for each item, there are only m – 1 location
parameters � and m – 1 weight parameters �. A similar phenomenon is found
in the 2PLM: although there are two response categories per item, correct and
incorrect, the model has only one discrimination parameter and one difficulty
parameter. The reference category for each item is the incorrect response.

The two other indeterminacies have to do with the origin and the unit of
the �-scale. As to the origin of the scale, it will be clear from the right-hand
side of (17) that applying the transformations

�* = � + d and �*ij = �ij + d,

with d being an arbitrary constant, yields (� – �ij) = (�* – �*ij), and thus lets
(17) remain unchanged. To solve this indeterminacy one can fix a single arbitrary
location parameter �ij (j � r) to an arbitrary constant (zero, for example) or
require that the sum of all location parameters is zero. Likewise, for the unit of
the scale, the transformations

�* = c�, �*ij = c�ij and �*ij = �ij/c,

where c is an arbitrary positive constant, yield �ij (� – �ij) = �*ij (�* – �*ij) and
will not change the value of the right-hand side of (17). This indeterminacy can
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be solved, for example, by fixing a single �-parameter to one. Notice that if �ij

is set to one, the category j must not be the reference category for that item.
The specific way in which origin and unit for a model are chosen is called
‘normalization’ in IRT.

In summary then, the number of free category parameters in the nominal
response model is not 	i mi as may be suggested by (17) but 	i (mi – 1) – 2.

In Figure 8.7, a graphical display is given for a four-category item. The
second category has been chosen as the reference category. The four weight
parameters � are –1, 0, 0.5 and 1.2, respectively. The location parameters are
–1.5, –0.5 and 0.65 for the categories 1, 3 and 4, respectively. The location
parameter for the reference category does not exist.

A general characteristic of the category response functions for this model is
visible in the figure: exactly one of the curves is increasing and one is decreasing;
the others are single peaked. The increasing one is associated with the category
having the largest �-parameter; the decreasing one is associated with the category
with the smallest �-parameter. The increasing one approaches the upper
asymptote (one) as � increases without bound, and the decreasing approaches
the same asymptote as � decreases without bound. If there is more than one
category with the largest weight parameter, than all the associated curves increase;
their asymptotes, however are less than one, but the sum of their asymptotes
equals one. This follows similarly for the smallest value.

Now assume that the item in Figure 8.7 represents a multiple choice item,
and the category labels 1 to 4 represent the alternatives. From the figure it is
clear that the ability level where category 3 is the modal one is higher than the
level where category 2 is the modal one. For the NRM it holds that, whatever
the distribution of the ability is in the population, the average value of students
choosing category 3 is higher than the average for those choosing category 2.
So, a valid NRM allows for discriminating between these two categories of
students. In working only with binary data (correct or incorrect) the distinction
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between students choosing category 2 or 3 is lost, meaning that one has removed
useful information about the latent ability.

More in general, it looks as if the four curves in Figure 8.7 are ordered, and
most importantly, they are ordered in the same way as the �-parameters. These
parameters appear in (17) as the coefficients of the latent variable �, and they can
be interpreted as the score a student gets when a category is chosen. In the example,
a score of –1 is given for category 1, a score of zero for category 2, and so on. 
The score on the test is then the sum of all item scores obtained, meaning that
the test score is a weighted sum of the categories chosen. This is the same rationale
as in the 2PLM. Notice that in the NRM and the 2PLM, the estimate of � is not
this weighted sum, but it is a monotonic transformation of it.

5.2 The partial credit model (PCM)

This model was introduced formally by Andersen (1977), but the name is due
to Masters (1982). It can be understood in several ways, and two of them will
be discussed here. In one approach, it will be considered as a special case of the
NRM, in the other, it will be characterized as a linear logit model.

As the PCM is a model for ordered categories, this implies that the order of
the categories is known, unlike in the NRM. Situations where this can arise are
items that can be partially correct, and a partial credit is given for such an answer.
Formally, the PCM has the same category response functions as the NRM, 
but the �-parameters are given a fixed value. It is customary in this model to
number the categories starting from zero. If the highest category is m, then
there are m + 1 response categories. The PCM is equivalent to the NRM with
the parameter �ij fixed at j for all items. The zero category is automatically the
reference category.

In the parameterization proposed by Andersen (1977), the category response
functions are given by

P(Xi = j) � � 1 if j = 0,
exp(j� – �ij) if j > 0. (20)

Masters uses another parameterization, where the �-parameters in (20) are
cumulative sums:

(21)

Such a reparameterization does not change the model, and if one knows the 
�-parameters, the �-parameters are immediately available:

�i1 = �i1,

�ij = �ij – �i, j – 1, (j > 1).

η βij ig
g

j

=
=

∑
1

.

174 Different methodological orientations



The PCM is an exponential family model. The sufficient statistic for the latent
variable � is the raw score: the sum of the partial item scores obtained, and the
sufficient statistic for the category parameters, is just the number of times the
category has been obtained.

The �-parameters in the Masters parameterization have a nice interpretation:
the parameter �ij is the location on the �-scale where the categories j and j – 1
have the same probability, which is shown in Figure 8.8 for two items with three
response categories, 0, 1 and 2: in the left-hand panel of the figure it holds that
the �-parameters are ordered in the same order as the categories, that is, �i1 <
�i2; for the right-hand panel, the order is reversed, �i2 < �i1. If the parameter
values are ordered in the same order as the categories, then for each category
there is an interval on the �-scale where that category is the modal one, that is,
the category is the most probable one. In the left-hand panel of Figure 8.8, 
it is seen that category 1 is the most probable one for �i1 < � < �i2. In the 
right-hand panel, category 1 is never the modal one. Sometimes it is claimed
that the �-parameters must be ordered in the same way as the categories, but
there is nothing in the model definition that prescribes such a rule.

The second derivation of the PCM is one where it is conceived as a possible
generalization of the Rasch model. In Section 1 it was shown that the Rasch
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model can be viewed as a logit-linear model. For binary outcomes, the logit
function is well defined: it is the logarithm of p/(1 – p), where p is the probability
of a success. With variables with more than two outcomes, however, the logit
function is not uniquely determined, although it is used in these contexts, with
a suitable modification.

The PCM can be characterized by the adjacent category logits (Agresti 1990)
as follows:

(22)

Together with the requirement that P(Xi = 0|�) � 1, this defines the PCM in
the Masters parameterization. Equation (22) is also equivalent with the following
conditional probability:

(23)

that is, the probability that the highest category is obtained, given that the choice
is between this category and the preceding one. The right-hand side of (23) has
exactly the same structure as the IRF for the Rasch model, but for the inter-
pretation, it is important to look carefully at the left-hand side. It is not easy to
imagine what could be a meaningful interpretation of this conditional probability
in an educational context. Moreover, the model is not invariant under a collapsing
of categories, as will be shown in a simplified example.

Suppose an item i has been scored into four categories, and furthermore that
it is applied in a population where the ability of all the test takers is constant,
say � = 0. The probabilities of responding to each category are given in the
second row of Table 8.1. Now assume that the PCM is valid for the original
categorization. The value of P(Xi = 2 | � = 0, Xi = 2 or Xi = 1) is 0.35/
(0.35 + 0.20) = 0.636, and solving the right-hand side of (21) for �i2 gives 
�i2 = –0.56. Now, suppose one wants to apply the PCM but with one category
less: the original categories 0 and 1 are collapsed into a single category, which
is the new reference category; the other categories are renumbered from 2 and
3 to 1 and 2 respectively. But applying the PCM rationale to this collapsed table
will give P(Xi = 2|� = 0, Xi = 2 or Xi = 1) = 0.35/(0.35 + 0.35) = 0.5 and as
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Table 8.1 Collapsing categories

Original categories 0 1 2 3
Probabilities 0.15 0.20 0.35 0.30

Collapsed categories 0 1 2
Probabilities 0.35 0.35 0.30



a result �i1 = 0. This means that the �-parameters in the PCM cannot be
interpreted as a kind of lower bound of the categories, or as steps or thresholds,
because in the example, the definition of the original category 2 (category 1
after collapsing) has not changed by the collapsing of the two lower categories,
but the value of the associated �-parameter has changed substantially.

Moreover, if the PCM is the exact model for the original categorization, it
cannot be exact for the data after collapsing.

A slight generalization of the PCM yields the generalized partial credit 
model (GPCM) (Muraki 1992). The generalization implies that a different
discrimination per item is added to the PCM. The weight or score parameters
(the coefficient of �) for category j in the two models is:

PCM: j,

GPCM: j × �i.

The parameter �i is a discrimination parameter for item i. The GPCM relates
to the PCM as the 2PLM relates to the Rasch model.

5.3 The graded response model (GRM)

This model (Samejima 1969, 1972, 1973) allows for collapsing of adjacent
categories in a double sense: the parameters are invariant, and if the model is
valid before collapsing, it remains valid after collapsing.

An easy way to see the structure of the model is to use cumulative logits
(Agresti 1990: 321), which are logits defined on cumulative probabilities: the
probability of obtaining category j or higher is compared to its complement,
the probability of obtaining a category lower than j. The GRM assumes that
these cumulative logits are linear in �:

(24)

Notice that the right-hand sides of equations (22) – the PCM – and (24) – the
GRM – have an identical structure, but the interpretation is quite different.
Equation (24) is equivalent with

(25)

where one sees again the same structure as in the Rasch model. However, (25)
is not an expression for the category response functions, because it expresses the
probability that the response is observed in category j or higher. The category
response functions then are given by
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P(Xi = 0|�) = 1 – P(Xi  1|�), (26a)

P(Xi = j|�) = P(Xi  j|�) – P(Xi  j + 1|�), (j = 1, . . . , mi – 1), (26b)

P(Xi = mi|�) = P(Xi  mi|�). (26c)

If the items are binary, that is, for all items it holds that mi = 1, then only (26a)
and (26c) apply, and the model is identical to the Rasch model. If mi > 1 for
one or more items, then (26b) applies for the middle categories, and the category
response function contains a difference of two logistic functions, and this means
that the model is not an exponential family model.

Figure 8.2 is a graph of the functions (25) for a four-category item – that
is, mi = 3. However, where in this figure – which was meant as an illustration
of the Rasch model – each curve represented a separate item, now the three
curves have to be interpreted as belonging to the same four-category item. The
labels for the parameters in the figure (�i, �j and �m) have to be replaced by
�i1, �i2 and �i3 respectively, where i is the index for the item. In the GRM the
category parameters are necessarily ordered in increasing order of the category
numbers, otherwise equation (26b) would yield a negative probability.

In Figure 8.9, the category response curves, corresponding to the three
cumulative curves given in Figure 8.1 are displayed. Notice that, similar to the
PCM, the curve corresponding to the zero category is decreasing, the curve
corresponding to the highest category is increasing and curves corresponding to
all other categories are single-peaked. In this figure, the location of the category
parameters do not have an elegant interpretation, unlike in the PCM; the obvious
interpretation is associated with Figure 8.1.

The collapsibility of adjacent categories is immediately clear from equation
(25): the parameter �ij is the location where the probability of obtaining category
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j or higher is 50 per cent, and this not dependent on how lower or higher
categories are defined. In this sense, the GRM has a nice interpretation in terms
of Thurstonian thresholds, which the PCM has not.

6 Multidimensional models

All models discussed thus far have one very important feature in common that
has not been discussed explicitly thus far: they all assume that the items in the
test are indicators of one latent variable. The assumption of conditional indepen-
dence amounts to claiming that any pair of items do not share any variance
beyond the variance that can be attributed to that latent variable. However, this
is precisely what is assumed in the one-factor model. In that sense, unidimensional
IRT models are just variations of the factor analytical model for a single factor.
This relation has been discussed in detail by Takane and De Leeuw (1987), and
a formal proof is given that the two parameter normal ogive model as discussed
above is exactly equivalent with the one-factor model.

The generalization to multidimensional models is then straightforward and
can be conceptualized as consisting of three components:

• For each item the performance is dependent on a linear combination of
abilities:

��i� = �i1�1 + �i2�2 + . . . + �ip�p , (27)

where the coefficients �i1, . . . , �ip have exactly the same meaning as in factor
analysis and are commonly referred to as factor loadings.

• The assumption of a latent response zi , which is a random draw from some
hypothesized distribution, as exemplified in Figure 8.5. The mean of this
distribution is the linear combination given by (25). In the tradition of 
factor analysis, the standard deviation of this distribution can vary across items,
and the distribution itself is assumed to be normal, but there is no objection
in principle to assuming that this distribution is logistic, or might have yet
another form. In most applications, it is assumed that the latent responses are
conditionally independent. The possibility provided in SEM for ‘correlated
errors’ is not to be conceived as a new feature of these models. It fits in the
general model described here, but in a concrete application a specification error
might occur, because ‘in reality’ there are p factors and the model assumes that
there are less. The unexplained covariance caused by this underspecification
may then show up as correlated residuals.

• If the latent response variables zi were observable, the preceding model
assumptions would be nothing else than the theory on factor analysis.
However, the variables zi are continuous, and the data delivered from a test
administration are highly discrete. So, one needs a mechanism to convert
the continuous latent responses to discrete overt responses. This mechanism
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is the model of a Thurstonian threshold, exemplified in Figure 8.5. General -
izations to polytomous observations are obvious: the number of thresholds
equals the number of observable categories minus one (Bock and Lieberman
1970; Christofferson 1975: Muthén 1978). It is even possible to conceive
of these thresholds as linear combinations of dimension-wise thresholds
(Glas and Verhelst 1995, Kelderman and Rijkes 1994).

A model where the performance depends on a linear combination of latent abilities
is a compensatory model: a low ability on one dimension or factor may be
compensated by a high value on one or more other dimensions; the probability
of a correct answer only depends on the result of the linear combination, and not
on its components.

There may be situations in educational assessment where such a compensatory
rule is not realistic. To find the solution to a mathematics problem that is
embedded in a more or less complicated description of a real-life situation, one
might hypothesize that a successful performance will depend on a sufficient
reading ability and a sufficient mathematics ability, but that deficiency in either
of these abilities cannot be compensated by an excess in the other. Models that
require such a multiple requirement are known as ‘conjunctive’ models
(Hendrickson and Mislevy 2005; Maris 1995; van Leeuwe and Roskam 1991).

A model that is logically tightly related to the conjunctive model is the
disjunctive model, where it is assumed that an item or a task can be successfully
solved by appealing to one of several abilities. In fact, both models are logically
equivalent: requiring sufficient reading and mathematics ability to solve an item,
is logically equivalent to requiring insufficient reading or mathematics ability 
to fail the item. This means that using the complement of the observed data
(exchanging ones and zeros) and reversing the direction of the latent dimensions
turns a conjunctive model into a disjunctive one and vice versa. An example is
a test where the use of different strategies may lead to the correct solution. The
multidimensional ability then refers to the ability to successfully handle these
strategies. This might be reflected, for example, in mathematics problems where
different strategies may be used to find the solution to a task, for example, by
using mainly algebraic arguments or mainly geometric ones.

7 Concluding remarks

The overview of IRT models presented in the preceding sections may leave an
impression of abundance and therefore of confusion: what to choose in a concrete
situation and how to decide if the choice made is the best possible one. It may
look as if the choice of the most complicated model is the best – it avoids as
many pitfalls and shortcomings as possible – and after the analysis it will show
‘automatically’ whether a simpler model is applicable.

Such a conception, however, is mistaken for two reasons. First, working with
complicated models usually causes problems in the parameter estimation, which
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may be of a technical nature (the software ‘does not find’ the estimates) but
also of a statistical nature: the estimates will tend to have large standard errors
and in many cases be highly correlated. In practice this means that a small change
in the data may lead to quite large shifts in the estimated values, which in turn
may require a substantial change in the interpretation of the obtained results.

The second misconception has to do with a more general approach to scientific
problems, where it is sometimes thought that complicated mathematical models
will reveal the true structure of the world. However, the real key to understanding
the determinants of educational performance is the setting up of clever and 
well-considered research programmes, with directed and specific hypotheses that 
can be tested empirically. The use of IRT models in testing these hypotheses 
is certainly recommended, but the decision as to which kind of data to collect
under which conditions is a prerequisite for good research.

In the national assessment programme for basic education in the Netherlands,
started in 1987 for arithmetic, it was decided from the onset that the analyses
would be carried out at the level of minimal curricular units, that is, units
described in the curriculum that were thought to be homogeneous enough in
content, didactic approach and thinking processes, such that the responses to
items belonging to the same unit could be described by a simple unidimensional
IRT model. Such an approach, which required a careful design and a rather
elaborate construction process of the item material, has proven to be useful. A
trend analysis of the results of four waves of the assessment showed a rather
dramatic decrease in the performance of the operations of multiplication and
division. It is very unlikely that such a trend would have been found if the test
had consisted of a ‘well-balanced’ mixture of material, covering the whole
curriculum but not fine grained enough to draw conclusions in any specific
domain. This implies that researchers in the area of educational effectiveness
should make use of IRT models to develop psychometrically appropriate scales,
but in order to do so they should seriously take into account the theoretical
background upon which a test or an instrument measuring a specific factor has
been developed. For example, the partial credit model may be found useful in
analysing data emerging from a high-inference observation instrument, and
thereby a valid measure of quality of teaching may emerge (Kyriakides et al.
2009). Another issue that researchers in the area of EER should take into account
has to do with the fact that IRT can be applied in incomplete designs that are
very likely to be used for measuring student achievement in longitudinal studies.
In this context, issues concerned with the use of different designs in applying
IRT and parameter estimation are discussed in the next chapter.
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IRT models
Parameter estimation, statistical testing
and application in EER

Norman Verhelst
CITO, The Netherlands

As was indicated in Chapter 8, the most important advantage of using IRT is
the possibility of applying it in incomplete designs. This does not mean, however,
that there are no restrictions on the test designs that can be used in connection
with IRT. For this reason, the first section of this chapter is concerned with
important features of designs that can be used with IRT models. The next section
refers to the problem of parameter estimation. In statistical modelling, the
problem of parameter estimation is in many cases technically quite involved,
because it amounts generally to solving a complicated set of equations. In this
section, technicalities will be skipped almost entirely, because of space limits and,
more important, because estimation procedures are usually made available in
computer programs that do not require the user to understand all technical
considerations. In Section 3, statistical tests are discussed and special attention
is given to the problem of power. An IRT model, considered as a complex
hypothesis, may be defective in many ways, and some tests are not sensitive to
specific defects. It is argued that the most important aspect of testing is the
creativity to find ways in which defects may be reflected in some aspects of the
data. Careful statistical testing is the key procedure needed to make a considered
decision of accepting or rejecting an IRT model and can also be found useful
in choosing the most appropriate IRT model and generating relevant person
estimates. Finally, in the last section of this chapter, we discuss the problem of
how to use the results of an IRT analysis in estimating student achievement and
searching for the impact of effectiveness factors operating at different levels.

1 Incomplete designs

The basic idea of using IRT models where not all students take the same test
is that two students will only be comparable if the tests they took have something
in common or, exchanging the roles of students and items, that two items are
comparable if there are at least some students having taken both items.
Graphically, this amounts to a very simple design requirement, which is
exemplified in Figure 9.1, for two groups of students. The shaded cells represent
the sets of items administered to each group. In the left-hand panel, there are
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two tests, coinciding with two disjointed sets of items. In this design it seems
to be impossible to compare the two groups of students, since they have no
items in common, nor to compare items from set 1 and set 2, because they have
no students in common. It is said that this design is not linked. In the right-
hand panel, the items are partitioned into three sets, and the first test contains
sets 1 and 2 and the second sets 2 and 3, so that set 2 is common to both tests
and comparisons are possible. Notice that in this design, items of set 1 can be
compared to items of set 3, although indirectly, because items in these two set
are comparable to the items of the common set 2.

This kind of indirect comparability is used to define linked designs for an
arbitrary number of sets of items and an arbitrary number of groups of students.
Formally, any two items, i and m, say, are linked if there exists a chain of items
(i, j, g, . . . , h, m) such that each adjacent pair (i, j), (j, g), . . . , (h,m) of items
in the chain has been administered to at least one student. The design is said
to be linked if all pairs of items are linked in this way.

There exist a number of frequently used designs, which will be discussed
briefly. Figure 9.2 contains an anchor test design and Figure 9.3 displays two
block-interlaced anchoring designs. The sets of items referred to in Figure 9.1
are usually called ‘blocks’. In the anchor test design one block of items is
common for all groups of students. This block is the anchor test. In the interlaced
design, a kind of chain with overlapping blocks is constructed. Notice that the
resulting figure looks a bit similar to a staircase, but an important feature is given
by the shaded blocks in the bottom left of the figure.

In the anchor test design with m groups of students, there are m + 1 blocks;
one block is common to all groups and all other blocks are unique. So there
are m mutually disjointed groups of students. In the interlaced case, all blocks
are administered to an equal number of groups, and, if there are m blocks, the
total number of groups required is m. In these designs, it is not required that
blocks contain the same number of items.

Using linked designs is by far the most important feature in choosing test
designs, as parameter estimation is hard or even impossible in non-linked designs.
However, there are more things worth considering about test designs:
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• How are individual students assigned to one of the five groups (see Figure
9.3)? By far the safest procedure is to use random assignment, although
this is not always possible because of practical constraints – for example, if
a whole class has to take the same test because the items are read aloud by
the teacher.

• An implicit assumption in the application of IRT models is that the latent
ability of individual students remains constant during the test administration,
but in practice, effects such as fatigue and boredom may lead to violations
of this assumption. Therefore, it is recommended to control for sequential
effects by making sure that the same block of items does not always appear
at the beginning or at the end of the tests in which it appears.

• Linking is not merely an all-or-none feature. Links can be strong or weak.
In the left-hand panel of Figure 9.3, each of the five blocks is linked to two
other blocks and not linked (directly) to two other blocks, while in the
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right-hand panel all pairs of blocks are linked directly, although not an equal
number of times. For example, the pair (B1, B2) occurs twice (in Groups
1 and 5), while the pair (B1, B3) occurs only once (in Group 1).

• Incomplete designs where all blocks appear an equal number of times in
each sequential position and where all pairs of blocks appear an equal number
of times are called balanced incomplete block (BIB) designs. For details on
such designs, see Cochran and Cox (1957).

To have the full advantage of the features of BIB designs, it is assumed that
students are allocated randomly to the test forms, and such a random allocation
is usually assumed in the other designs as well. In experimental studies where
such a random allocation is feasible, BIB designs are optimal. However, in
developmental studies they are typically not suited, as are neither of the other
designs discussed so far.

In the student monitoring system developed by the National Institute for
Educational Measurement (CITO) in the Netherlands, performances in a certain
domain (such as reading comprehension or mathematics) are scaled so as to be
comparable for the whole period of basic education (running from six to twelve
years of age). In a calibration study using item material that encompasses the
curriculum of six grades of formal instruction, none of the designs discussed so
far would be realistic, because the material developed for the higher grades is
inaccessible for the lower grades, and the material typically developed for the
lower grades will in many cases be trivial for the higher grades. Or to put it a
bit differently, in developmental studies the content of the test forms has to
correspond quite accurately to the implemented curriculum. So the general form
of a design that can be applied in such cases is something similar to the design
presented in Figure 9.4. This approach was also used by studies measuring the
effect of schooling by collecting data from different age groups of students
(Kyriakides and Luyten 2009).
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Although the design displayed in Figure 9.4 looks similar to the block-
interlaced anchoring design of Figure 9.3 (left-hand panel), there are three
important differences:

• The groups of students in the present design are statistically not equivalent;
to the contrary they are selected to be homogeneous with respect to the
concept to be measured. The label ‘grade’ is just a reminder that such a
selection is in operation.

• The construction of the blocks of items is restricted: for example, it is
assumed that blocks 1 and 2 are suitable for grade 1 students. In general,
the blocks will be ordered roughly in terms of the difficulty of the items
they contain.

• As a natural consequence of the two preceding features, there will be no shaded
cell in the bottom left corner of the design table. In a statistical sense this 
makes the design less stable than the interlaced design, but this is a restriction
one cannot escape when applying IRT in developmental studies.

A further complication arises when the study is a longitudinal study, where the
same cohort of students is followed for a number of years. Applying the design
of Figure 9.4 as it is presented here may cause unwanted effects. If the sample
of students consists of the same people in all four grades, one block of items
will be administered twice to the same students in two consecutive years, and
the difference between performances may be attributed to growth in the ability
or to memory effects, and these two causes are confounded. To avoid such a
situation, a more complicated design is needed. The blocks B1 to B5 referred
to in Figure 9.4 are to be conceived of as composed of different blocks, and
the design has to take care that no student will get the same block in two
consecutive years. A small example is given in Figure 9.5. Here it is assumed
that students belonging to group ‘grade 1(a)’ belong to the group ‘grade 2(a)’
the next year, and similarly for the (b) students. The design in Figure 9.5 is
linked, and no student sees the same items twice.
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This design is used in longitudinal studies measuring the short- and long-
term effect of schools (Kyriakides and Creemers 2008).

Incomplete designs and missing observations

The theory of parameter estimation, to be discussed in the next section, is in
general easily adapted to incomplete designs, making the comparison of test
performances possible, even in longitudinal studies, where at each measurement
occasion the test form administered to any student does not contain any items
answered before. This high degree of flexibility might suggest the idea that the
use of incomplete designs is also the ultimate elegant solution to treat missing
observations in a data matrix: one just treats an incomplete data matrix as the
realization of an incomplete design. The implication of such an approach – which
is flawed in general – is that every skipped item (by the student) is treated as if
this item has not been administered, but a clever student, being aware of this
approach, can develop a strategy of skipping all items where he is not very sure
about the correct answer. This will increase his test score on the answered items
and in general will lead to a biased estimate of his ability.

In general, there is no unique methodology on how to treat missing observa -
tions, and all approaches usually rest on assumptions that should be carefully
checked. More information on treating missing observations can be found in
the seminal paper by Rubin (1976) and in Little and Rubin (1987).

2 Parameter estimation

In the overview of IRT models in Chapter 8, a distinction was made between
parameters of the model – which in IRT are always parameters associated with
items – and the latent variable �. In specifying the model, the item parameters
as well as the �-value of individual students are unknown, and will have to be
estimated from the data in some way. However, until now, nothing has been
said about the status of �. There are two possibilities: either one can treat the
individual �-values of the students in the sample as unknown parameters or one
can treat them as realizations of a random variable. This distinction amounts to
considering the �-values as fixed effects or as random effects, and methods of
parameter estimation will differ according to the choice one is making. The
present section discusses maximum likelihood estimation procedures for both
possibilities.

2.1 Parameter estimation in fixed-effects models

In fixed-effects models, the item parameters as well as the value of the latent
ability for each student v in the calibration sample are considered as unknown
parameters that have to be estimated from the observed item responses in the
calibration sample. Suppose one applies an incomplete design, where each student
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from a sample of, in total, n students answers a subset of, in total, k items. The
measurement model is the Rasch model. In a fixed-effects model the latent ability
of each student is treated as a model parameter that has to be estimated from
the data; so there are n + k – 1 free parameters, because one parameter can be
freely fixed for normalization purposes.

Maximum likelihood estimates are those values of the model parameters that
jointly make the likelihood function attain its maximal value. However, these
values are the same as those that make the log-likelihood function maximal,
because the logarithm is an increasing function of its argument. To find this
maximum, the partial derivatives of the log-likelihood function are equated to
zero. These equations are called the ‘likelihood equations’, and their solution
yields the maximum likelihood estimates. The log-likelihood function in the Rasch
model when applied to incomplete designs is given in equation (1), which is
given here explicitly as a function of the unknown parameters.

(1)

In the right-hand side of (1), the variable dvi is an indicator variable for the
design, taking the value one if item i has been administered to student v, and
zero otherwise. The symbol d in the left-hand side represents the matrix of
indicator variables. The sufficient statistic sv and ti also have a slightly different
meaning in incomplete designs:

This implies that the test score of a student is the number of correctly answered
items that have been administered. If dvi = 0, then xvi can have an arbitrary
numeric value; it will never influence the outcome of an analysis since it is always
multiplied by zero. Notice that the parameter �1 does not appear in the left-
hand side of (1), because it is fixed at some constant to normalize the solution
– but it does appear in the right-hand side.

The derivation of the likelihood equations is beyond the scope of this chapter.
Details can be found in Fischer (1974) and Molenaar (1995). It is, however,
important to note that there are no explicit solutions for these equations but
that they have to be approximated iteratively. This is true for the Rasch model,
the simplest of all IRT models, and it holds a fortiori for all IRT models.

Solutions do not exist for �v if student v has administered all items correctly
or all incorrectly. Similarly, there is not a solution for �i if the answers given to
item i are all correct or all incorrect.

As the preceding restriction might be seen as a disadvantage of the Rasch
model, it can be repaired relatively easily by increasing the sample size in such
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a way that at least one correct and one incorrect answer is given to each item.
However, students with all items correct (getting a perfect score) or all incorrect
(getting a zero score) have to be left out of the analysis.

The bad news about this fixed-effects Rasch model is that the parameter
estimators are not consistent. If the sample size keeps growing, the item parameter
estimates do not converge to their true value. Loosely speaking, the reason is
that to collect more information about the item parameters, the sample size has
to increase, but with every added student, a new parameter (his or her �-value)
is added to the problem, such that the number of parameters grows at the same
rate as the sample size.

Correction formulae exist to correct for this inconsistency, but they apply
only to complete designs. In incomplete designs there is no general correction
formula. And there is even more bad news: when using likelihood maximization,
a number of theoretical results are available to deduce good estimates of the
standard errors of the estimates and to construct valid statistical tests of goodness-
of-fit, but these results do not apply in the fixed-effects Rasch model. In general,
therefore, it is not known to what extent reported standard errors or results of
statistical tests are to be trusted if they are based on this method of estimation.
Nevertheless, this method of estimation is still quite popular and is used, for
example, in the programs WINSTEPS and FACETS.

Although there are few results from this method of estimation for other models
than the Rasch model, it is to be expected that this kind of inconsistency will
occur in other models as well. Therefore, it is advisable to avoid this method.
The method of estimation described here is known in the literature as the
unconditional maximum likelihood (UML) or joint maximum likelihood (JML)
method of estimation. The latter name is the most used nowadays.

2.2 Parameter estimation in mixed-effects models

In the mixed model approach, the item effects are considered as fixed effects,
but the values of the latent variable are treated as random effects. This means
that the sample of students is considered as a sample from some population,
and that in this population the latent variable follows some distribution. If one
can assume that this distribution can be described with a probability density
function of, say, g(�), then the marginal likelihood of a data vector xv and the
corresponding design vector dv is given by

(2)

where fi(�) is the IRF of item i and depends on the item parameter �i, and g(�)
depends on the p ‘population’ parameters �1, . . . , �p. For example, if it is
assumed that the latent variable is normally distributed, the two population
parameters are the mean and the variance of this distribution and p = 2.
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It is important to read the right-hand side of equation (2) correctly. The
ability of student v, �v, does not appear in this expression; the only reference to
student v is through the design variables dvi and the observed responses xvi. The
latent variable � is the integration variable, and it is integrated out. So the right-
hand side of (2) must be read as ‘the probability of observing xv, given dv from
a student randomly drawn from the population where the probability density
function of the latent variable is given by g(�)’. This likelihood is called the
marginal likelihood. The likelihood for a matrix of observed responses x is just
the product (over v) of the expression in (2):

(3)

Maximizing the right-hand side of (3), or its logarithm with respect to all model
parameters (that is, item parameters and population parameters), jointly yields the
marginal maximum likelihood (MML) estimates of the parameters. This procedure
leads to consistent estimates of all model parameters and is a good basis on which
to make estimates of the standard errors and to build statistical goodness-of-fit tests.

Notice that the right-hand side of (3) is a generic expression for all unidimen-
sional IRT-models and all population models where the distribution can be
described with a probability density function. The technical procedures actually
to compute the parameter estimates, of course, will differ from model to model.
For a detailed explanation of the Rasch model, see Glas (1989) or Molenaar
(1995).

Identifiability

Fixed-effects models are not identified if the design is not linked. This is easy
to understand because the unit and the origin of the scale can be freely chosen
for each set of test forms that are not linked to any of the other test forms. In
the left-hand panel of Figure 9.1, this means that for each of the sets an arbitrary
unit and origin can be chosen for each of the two sets of items, and there is no
means to bring the two sets onto a common scale.

When using MML, the design restrictions can be relaxed. Referring again to
the left-hand panel of Figure 9.1, the model is identified if the two groups of
students are considered as equivalent samples from the same population. Although
the groups do not share any item, they are tied together by the equivalence of
their ability distribution, so that it is possible to choose a common unit and
origin, for example, the standard deviation and the mean of the common distribu -
tion. Although this situation is comfortable, one should be careful with the
assumption of statistical equivalence of the two samples. If this assumption is
not fulfilled, all parameter estimates will be biased. In practice, using this assump -
tion will in general be satisfied only in an experimental set-up where students
are allocated randomly to one of the two groups.
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About g(�)

In principle, any g(�) can be used in equation (3). The most widely used one is
the normal distribution. Sometimes, however, a discrete distribution is used as well,
where it is assumed that the latent variable can assume only m different values, called
support points. In such a case, again, two different approaches are possible. In the
first approach the support points are considered as known, for example, m Gauss-
Hermite quadrature points, and for each quadrature point the probability mass has
to be estimated, leaving m – 1 free parameters, since the sum of the probability
masses equals one. Details of such an approach are given by Bock and Aitken
(1981). In the other approach, support points and their associated masses have to
be estimated jointly. For the Rasch model, this has been investigated by De
Leeuw and Verhelst (1986); but see also Forman (1995) and Laird (1978). In this
latter approach there are also theoretical results for the value of m. Although, such
an approach looks attractive, there are two drawbacks: the number of parameters
to be estimated is generally larger than when using a parametric distribution, and
the estimated distribution is in general not unique.

But there is a more serious practical drawback to the use of the MML
procedure. The use of the first multiplication sign in (3) – the multiplication
over students – implies that one assumes the latent value is identically distributed
for all students in the sample. This is equivalent to assuming that the students
represent a simple random sample from a distribution g(�), and this in practical
applications in EER is seldom the case. Suppose a sample of students is drawn
using a two-stage cluster sampling procedure (first schools, then students within
schools), and one applies (3) as it stands, then the estimates of all parameters,
inclusive of the item parameters, may be systematically affected, even if it is true
that g(�) is the correct distribution for the whole student population.

Assume, as an example, that one wants to apply a two-level model, where
the school effects, uj, are assumed to be normally distributed with mean �0 and
variance �2, and the student-within-school effects �vj are normally distributed
with mean zero and common variance �2. If so, then the likelihood (3) has to
be replaced with

where g1(�) is the probability density function for the normal distribution 
N(0, �2) and g2(�) is the probability density function for N(�0, �2). The first
product sign in (4) runs over schools, the second over students within schools,
and the right-most one runs over items.

The previous example makes clear what the general problem is: the measure-
ment model, be it the Rasch model or any other model, is, for the sake of its
item parameter estimation, embedded in a structural model – via the likelihood
function, which causes two kinds of problems:
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• The first one is of a technical nature: both models can be quite complicated,
and finding the maximum of the likelihood function is not a trivial task, as
can be seen from the sandwich structure of multiplication signs and integral
signs in (4).

• The second problem is a more principled one: it is true that if the models
are known to be the correct ones, maximizing the likelihood estimation will
yield estimates that are optimal in a number of respects, but the problem
is usually that in any application one cannot be sure that the models are
correct. It may be the case, for example, that in the structural model (as in
(4)) there is a large gender effect, which has been ignored. In such a case,
and dependent on the design, such a specification error may lead to biases
in the estimates of the parameters of the measurement model, and it is very
difficult to find out in general terms how severe these biases will be. Or to
put it a bit differently, using some distributional assumption about the latent
variable will affect the estimates of the measurement model. Conversely, a
defect in the measurement model will affect the inferences about the
structural model, also to an unknown extent. For example, it may happen
that one finds a seemingly large difference between the mean ability of boys
and girls, but that this difference is caused by the presence of a few items
that do not fit the assumptions of the measurement model.

These problems make it clear that it would be worthwhile to have a method to
estimate the parameters of the measurement model, and to check the validity
of the model, in a way that is not affected by any assumption about the
distribution of the latent variable. Such a method is discussed in the next section.

2.3 Conditional maximum likelihood (CML) estimation

When one is interested primarily in the measurement model, the abilities of the
students in the sample are a kind of nuisance, and therefore they are sometimes
called ‘nuisance parameters’.

Assuming a certain distribution in the population and using MML estimation
is one way of getting rid of these nuisance parameters. Another way, which can
only be applied with exponential family models, is conditional maximum
likelihood estimation. The principle is that one maximizes the probability of the
observed data (the likelihood), conditional on sufficient statistics for the nuisance
parameters.

To gain an impression of how this works, an example is given for the Rasch
model with k = 3 and the score s = 2. It is easy to see that for a student with
ability �, the conditional probability of obtaining the response pattern (0, 1, 1)
is given by
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where the denominator is the sum over all response patterns yielding a score of
2. To obtain a less complicated expression, a simple reparameterization of the
model is introduced. We define

�i = exp(–�i).

Using this, one can write

where the right-hand side consists of a fraction multiplied by a product of item
parameters. It is easy to check that the same fraction will appear in all probabilities
in the denominator of (5), from which one obtains immediately the very
important result:

(6)

where the right-hand side is independent of � and is only a function of the item
parameters. Equation (6), considered as a function of the item parameters, is
called the conditional likelihood of the response pattern (0, 1, 1). The conditional
likelihood of a data set is just the product of the conditional likelihood of all
response patterns. The conditional maximum likelihood (CML) estimates are
the values of the parameters that maximize this product (or its logarithm).

This method was proposed by Rasch (1960) and is to be considered as a
great discovery. Note that the condition in (6) is the test score, and it is only
by conditioning on the test score that the conditional likelihood is independent
of �. This result can be generalized, however, to other models: in the Rasch
model, this independence is obtained because the test score is the sufficient
statistic for �. The generalization then amounts to the statement that by CML
one can get rid of the nuisance parameters if they have a sufficient statistic and
if one conditions on these statistics.

Andersen (1973) has shown that CML yields consistent estimates under very
broad conditions. Software that allows one to implement this method for the
Rasch model includes OPLM (Verhelst, Glas and Verstralen 1994) and the eRm
package in R (Mair and Hatzinger 2007). The method is easily applicable in
incomplete designs (Molenaar 1995). For the model to be identified, the design
must be linked.

The important theoretical advantage of using CML is that the estimates are
consistent independently of the way the sample has been drawn. There is no
requirement whatsoever to draw representative samples, and the method is
applicable under multiple stage sampling. Application in longitudinal studies 
is also perfectly possible, as the only assumption that is made is that the ability
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of the student is constant for all the item responses he or she has given. This
means that in longitudinal studies, students having taken part in the study at
two or more occasions are formally treated as different students at every testing
occasion. This so-called sampling independence is an important theoretical advan -
tage that is sometimes incorrectly used. Here are two comments on this:

• It should be clear that the advantages of the CML method only apply if the
model is valid; they do not follow from the mechanical application of a
computational routine. The validity of the model has to be tested carefully,
and one has to be careful with generalizations. Suppose an achievement test
has been validated using the Rasch model in some stable setting of the
educational conditions (for example, in schools of a specific local educational
authority, or schools that use a specific curriculum). This implies that if the
curriculum changes drastically at some point, it does not follow that the test
remains valid in the same way as before the reorganization. It is an (important)
empirical question if it does or does not, and a justification based on the result
of sampling independence is not justified.

• The principle of sampling independence does not imply – even if the model
is valid – that all samples are equally well suited for estimation purposes.
The accuracy of the estimates depends on the amount of statistical infor-
mation that is collected, and this in turn depends on the sample size and
on the match between student ability and item difficulty. Loosely speaking,
this means that one collects the maximal information on an item parameter
from a student’s response if the probability of a correct response is 50 per
cent. Conversely, if an item is too difficult or too easy relative to the ability
of the tested student, one collects little information, and the estimates will
be less accurate than with a good match between difficulty and ability.

Of all the models introduced in Chapter 8, the Rasch model and the partial
credit model are the only two models where CML estimation of the item
parameters is possible. The Rasch model, however, is quite strict in its assump-
tions, and in empirical applications the requirement of equal item discriminations
is often not attained, unless the development of the test is based on the
assumption that each item should be able to discriminate between students. In
the 2PLM, the weighted score, with the discrimination parameters as weights,
is a sufficient statistic, but to condition on it, the weighted score must be known.
If we treat the discrimination parameters as if they were known then we fix their
values by hypothesis. Thus, in the 2PLM specialized to this particular case, CML
is possible in principle. Since of the two parameters per item, one has been fixed,
there remains only one parameter to be estimated for each item; hence the name
One Parameter Logistic Model (OPLM; Verhelst and Eggen 1989; Verhelst 
and Glas 1995). Applying the same rationale to the generalized partial credit
model (GPCM) also makes CML possible.
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The existence of sufficient statistical is necessary for CML to be possible, but
it is not the only condition that must be satisfied, as the following example shows.
Assume k = 3, and the discrimination parameters are fixed at 1, � and e,
respectively. For all students having two of the three items correct, their weighted
score is (1 + �), (1 + e) or (� + e), and these three numbers are different from each
other. An analogous result holds for students having zero, one or all three items
correct. So, there is a one-to-one relation between response patterns and weighted
score, meaning that from the weighted score one can deduce with certainty the
response pattern, or that it holds that P(x|s) = 1, independently of the item
parameters. More generally said, the sufficient statistics do not lead to a reduction
of the data: they can assume as many different values as there are response patterns,
and therefore the conditional likelihood function is constant and has no maximum.

To ensure that there is sufficient reduction, in the software package OPLM
the discrimination parameters must be fixed at integer values in the range 
[1, 15]. Years of experience with the program have shown that in most cases,
unique estimates of the item parameters are obtained. A general theoretical
result that describes when the estimates exist or do not, however, is not available.

2.4 Bayesian estimation

In procedures using maximum likelihood, the parameters are considered as
unknown but fixed constants. In a Bayesian approach the parameters are con-
sidered as random variables having some distribution. The distribution can be
thought of as representing a summary of one’s knowledge about the parameters.
If it is very peaked with a small variance, this represents a state of knowledge
where one is quite certain about the parameter: a small range around a central
value has a large probability, indicating that one is quite certain that the parameter
falls in that range. If the variance is large, the uncertainty is great.

In Bayesian estimation procedures, one has to specify the distribution of the
parameters before the data are collected. This distribution is known as the prior
distribution. The data themselves provide information about the parameters, that
is, they add to our knowledge about them, so that after the data are collected
(and properly analysed) the distribution of the parameters will have changed.
This changed distribution is called the ‘posterior distribution’ and represents
one’s knowledge after having collected the data. In general, it is determined by
the product of the prior probability density function and the likelihood. If one
wants a point estimator, usually the mean of the posterior distribution is taken
and, as a measure of uncertainty, one can take its standard deviation.

This very concise description hides one of the significant problems of Bayesian
estimation: the equation of the posterior probability density function is very
complicated and, mathematically, hardly tractable (except in very special cases,
which are not of much interest in the framework of IRT modelling). In the
1990s a sampling approach to Bayesian estimation in complex statistical models
became rather popular, due to the rapidly increasing computational power of
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modern computers. This approach has been embedded in the general theory of
Markov chains and is known as Markov Chain Monte Carlo (MCMC). A concrete
application in IRT can be found in Albert (1992), using the two-parameter
normal ogive model in conjunction with a normally distributed latent variable.
A more general introduction to Bayesian data analysis can be found in Gelman
et al. (2003), and an application to the Rasch model is discussed in Maris and
Maris (2002).

Free software is provided by the BUGS project (Lunn et al. 2000) and can
be applied to – in principle – arbitrary complex models.

3 Testing IRT models

All statistical models have, in principle, the status of a hypothesis, and an important
aspect of their use is testing whether this hypothesis is tenable. Such testing can
be done in a formal way or an informal way. Formal procedures commonly take
the form of statistical hypothesis testing, while informal procedures are those 
that indicate the ways one can make the model look acceptable, or not.

Proponents of a certain measurement model usually want the model to be
the ‘correct’ one, and an easy way not to have to reject the model is not to look
too critically to the correspondence between observed data and the model
predictions of it. More formally, this means that in a statistical sense, the model
is the null hypothesis, and in contrast to experimental set-ups, the researcher
does not hope to reject the null hypothesis in favour of an alternative hypothesis
(corresponding to the research hypothesis), but hopes not to be forced to reject
it. Statistical tests used for this purpose are summarized under the name goodness-
of-fit tests, and in general they look at the correspondence between some features
of the observed data and the prediction of these same features from the model.

In this section some broad categories of statistical tests will be reviewed. The
main distinction that will be considered is the one between exact tests (Section
3.1) and asymptotic tests (Section 3.2): the former category yields exact results
whatever the sample size, while asymptotic tests are only exact as the sample
size tends to infinity and are useful in practice only when the sample size is large
– where it is often not too clear what is meant by large.

3.1 Non-parametric tests of the Rasch model

In exponential family models, the likelihood of the observed data depends on
the observed data only through the sufficient statistics (see section 2.1). This
has an important implication: if the model is valid, all data sets with the same
sufficient statistics are equiprobable. Take a coin-tossing experiment as an
example. Suppose a coin is tossed n times and lands heads (= success) m times.
The model for the outcomes is relatively simple: it states that the probability of
landing heads is � for all trials and that all outcomes are mutually independent.
The likelihood of the outcomes under this model is �m(1 – �)n – m, that is, the

IRT models  197



number of successes is the sufficient statistic for the parameter �. To estimate
the parameter �, only the proportion of successes is used, but one can look at
the internal structure of the data to judge the trustworthiness of the model.
Suppose, for example, that n = 500 and m = 250. The ML estimate of � is
250/500 = 0.5, but on closer inspection of the outcome sequences, it appears
that the first 250 trials were a success and the last 250 a failure. Although such
a sequence is as probable as any other sequence with 250 successes, it is very
likely that one will not accept the model because it has too few runs. (A run is
a sequence of equal outcomes. In the example there are two runs). One might
question, therefore, the assumption of independence of the trial outcomes. 
To have a rational judgement on the number of runs, one needs to know the
distribution of the number of runs under the null hypothesis and conditional
on the value of the sufficient statistic (that is, 250 of the 500 trials were a success).
For this example, this distribution can be derived mathematically – see the
discussion of the runs test in Siegel and Castellan (1988) – but the distribution
can also be approximated to an arbitrary degree of accuracy by sampling a large
number of sequences of 500 trials with exactly 250 successes and the number
of runs determined for each sequence; the percentile rank of the empirical
outcome can be determined in this distribution. If it is smaller than 2.5 or larger
than 97.5, the null hypothesis (the model) is rejected – that is, the test rejects
at a significance level of 5 per cent.

The versatility of this approach is clear from the fact that we may apply it to
other statistics than the number of runs. In fact, it can be applied to any statistic,
and it depends on the imagination of the researcher to find a statistic that may
be indicative for some special defect in the hypothesis. Suppose, for example,
that one has a suspicion that the value of � has decreased systematically during
the experiment. If this were true one would expect fewer successes in the second
half of the experiment than in the first half, and so a suitable statistic to test
this hypothesis would be the difference in number of successes between the first
and second half of the experiment.

Exactly the same reasoning as in the coin tossing example may be applied to
the Rasch model: the sufficient statistics for the item parameters and the latent
values of the tested students are the marginal totals of the data matrix. This
means that, if the Rasch model is valid, all n × k binary tables with the same
marginal totals as the observed one are equiprobable, and for any statistic one
can approximate the sampling distribution by drawing at random a large number
of these tables and by computing the statistic on each of these. The value of
the statistic in the empirical table can then be compared to the simulated
distribution, that is, its p-value can be computed.

The important difference between an application with the coin tossing example
and the Rasch model is that in the former it is easy to draw a random sequence
of 500 outcomes with 250 successes, while drawing at random a binary table
with given marginal totals is extremely difficult; in fact, no procedure for how
to accomplish this has thus far been found. Methods exist, however, for sampling
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in a way that gives a simulated sampling distribution that approximates the true
distribution. Two classes are studied in the literature, one based on importance
sampling and one based on MCMC techniques. A detailed account with
references to earlier work can be found in Verhelst (2008). Applications for any
statistic can be run in R (Verhelst, Hatzinger and Mair 2007). The user has 
to program a function in R where the statistic(s) of interest is computed.
Unfortunately, the sampling procedure only applies to the Rasch model in a
complete design. Generalizations to incomplete designs and to exponential family
models for polytomous data, such as the PCM, are still needed.

3.2 Pearson-like tests

Pearson’s chi-squared test, applied to contingency tables, is often used in IRT
modelling, and it is taken for granted that the test statistic is asymptotically chi-
squared distributed. The applicability of this test to complicated models, however,
is not trivial, and inconsiderate use may lead to serious errors. A theoretically
satisfactory solution was presented by Glas and Verhelst (1989, 1995) who
defined a broad class of Pearson-like tests that are asymptotically chi-squared
distributed. Unfortunately, the computation of the test statistics is rather compli-
cated; see Verhelst and Glas (1995) for a detailed account. In this chapter, only
a brief account will be given on an item-orientated test statistic in the Rasch
model, labelled Si.

To remain in the general framework of Pearson-like tests, a k – 1 × 2 table
is considered, the rows indicating the scores on the test and the columns
indicating the quality of the answer, 1 for a correct answer and 0 for a wrong
answer for some item i. Zero scores and perfect scores are omitted. See Table
9.1, where O indicates observed frequencies and E expected frequencies. Define
pi|s as the proportion of correct answers to item i in the score group of students
with score s. And similarly, define �i|s as the theoretical conditional probability
(under the model) of a correct response, given that the score equals s. Clearly
then, one can write

Os1 = nspi|s and Es1 = ns�i|s

where ns is the number of students with score s. Using these definitions, the
well-known expression for Pearson’s chi-squared statistic can be written as
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If the theoretical probabilities �i|s were known exactly, then the test statistic
would be asymptotically chi-squared, distributed with k – 1 degrees of freedom;
but we only have estimates, and the problem arises because the estimate of �i|s

depends on all item parameters, and if we subtract a degree of freedom for each
estimated parameter, we would end up with zero degrees of freedom. This shows
that the problem is not simple; indeed, it is technically quite involved. Generally
speaking, the solution consists in applying a certain correction to the test statistic,
which takes into account that the parameters have been estimated from the data.
Details can be found in Verhelst and Glas (1995). The corrected statistics
(indicated as Si) are computed for the Rasch model and OPLM in the OPLM
software package.

Apart from the theoretical burden to show the correctness of the chi-squared
distribution, there is also a practical problem. The theoretical chi-squared
distribution is only an approximation to the true distribution of Si, and it is known
that the approximation improves as the sample size increases. The practical
problem is to know when the approximation is good enough to be useful with finite
sample sizes. From research in statistics, it is known that Pearson’s statistic gives
odd results if expected frequencies in the table become very small. To avoid such
a situation, Table 9.1 may be condensed by taking some adjacent score groups
together (such that observed and expected frequencies in a number of adjacent rows
are just summed together). In such a case the scores are grouped into Q groups,
G1, . . . , Gq , . . . , GQ. For example, the lowest score group G1 = {1, 2, 3, 4} means
that the scores 1 to 4 are taken together to form one single score group. The
expression for the approximate statistic S*i is then given by

.
(8)

If the necessary correction for the estimation of the item parameters is applied,
the resulting statistic is (asymptotically) chi-squared distributed with Q – 1
degrees of freedom.
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Table 9.1 Bivariate frequency table for item i

Item response

Score 1 0 total
1 O11 (E11) O10 (E10) n1
. . . . . . . . .
s Os1 (Es1) Os0 (Es0) ns
. . . . . . . . .
k – 1 Ok – 1,1 (Ek – 1,1) Ok – 1,0 (Ek – 1,0) nk – 1



In the program package OPLM, groups of scores are formed such that the
expected number of correct and incorrect answers is at least five in each group.
Extended simulation studies have shown that the distribution of the Si statistics
is very well approximated by the chi-squared distribution.

An application: differential item functioning (DIF)

Applying an IRT model in an empirical population assumes that the model is
valid in every sub-population in the same way. It may happen, however, that
some items function differently in different sub-populations (see Holland and
Wainer 1993, for an extensive discussion). Formally, an item is said to show
differential functioning of item i with respect to two populations, P1 and P2,
say, if for some ability value � it holds that

P(Xi = 1|�, P1) � P(Xi = 1|�, P2). (9)

For applications in EER it is important to look for items that show DIF with
respect to important variables, such as gender, SES or method of instruction
(Kyriakides and Antoniou 2009). When longitudinal studies are conducted in
order to measure the long-term effect of teachers and schools, it is important
to look for DIF at different moments of time. If part of the test material has
become known between the first and second measurement moment, these items
might show DIF in favour of the second measurement moment. If this is not
recognized, and the analyses are carried out as if the measurement is valid, this
will result in a biased estimate of the trend and may result in an underestimation
of the long-term effect of school.

The way DIF is detected in the OPLM package is fairly simple. Suppose item
i has been applied in two cycles of a survey, then (implicitly) two tables such as
Table 9.1 are built, and the sum of squares given in (8) is simply added for the
two cycles. If the correction due to the estimation of the parameters is applied
properly, then the resulting statistic is asymptotically chi-squared distributed with
degrees of freedom equal to the total number of score groups (in the two cycles
jointly) minus 1. In Figure 9.6 a graphical display is given of the results of such
an analysis in the PISA project. The item is a mathematics item administered in
the cycles of 2000 and 2003. The results apply to one of the participating
countries. The Si statistic for this item is 42.92 with 14 degrees of freedom, and
is highly significant.

The horizontal axes in both figures are to be read as ordinal axes. The symbols
in the figures (crosses or bullets) indicate the proportion of correct responses in
each of the score groups. The middle smooth line represents the predicted
proportion (the points are connected by a smoothed line), and the two outer
smoothed lines represent an approximate 95 per cent confidence envelope. If
the model is true, then the observed proportions should fall (in 95 per cent of
the cases) within this envelope. In the two figures, one can see that this is the
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case, but on the other hand, there is a systematic difference between the two
figures: in the 2000 cycle students perform better than predicted by the model,
while in the 2003 cycle the performance is worse than predicted, and this
systematic difference is detected by the formal statistical test, which gives a very
significant result.

3.3 Three classes of statistical tests

To exemplify the three classes of model tests, we take the preceding example of
DIF as a starting point. Suppose the item displayed in Figure 9.6, henceforth
called the target item, is the only item for which there is DIF and that for the
other items the model as specified is valid. As the data have been analysed with
OPLM, we assume also that the discrimination parameters for all items are well
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specified, and that for the Figure 9.6 target item, the discrimination parameter
is valid for the two cycles. This means that in the specification of the model,
there was only one error: the difficulty of the target item is different in the two
cycles. One could in principle cope with this situation by considering the target
item conceptually as different items in the two cycles (with possibly two different
difficulty parameters), and then the model would be a correct description of the
reality. The model that has been applied, however, represents a restriction on
the parameters of the general model in that it requires that the difficulty parameter
of these two conceptual items be equal in the two cycles. So the model as applied
imposes a restriction on the parameter space of the general or encompassing
model.

In statistical terms, the null hypothesis of the statistical test is the restricted
model, while the encompassing model is the alternative hypothesis. There are
three ways of testing such hypotheses, which are asymptotically equivalent but
which imply different procedures. These tests are likelihood ratio tests, Wald-
type tests and Lagrange multiplier tests. These tests are discussed below and are
also discussed in relation to Structural Equation Modelling in Chapter 12.

Likelihood ratio tests

In this class of tests, the parameters are estimated (by maximum likelihood)
under both the general model and the restricted model, and their maximal values
under both models are compared. The test statistic is

(10)

where the ‘*’ indicates that the value of the likelihood function has to be taken
at its maximum. The subscript g stands for the general model and the subscript
r for the restricted model. LR is asymptotically chi-squared distributed and the
number of degrees of freedom equals the number of restrictions that were
imposed to specify the restricted model.

In the example of the DIF item, this would mean that we would have to
estimate the parameters twice: once in a model where the target item is treated
as identical in the two cycles and once where it is treated as two different items.
The LR-test would give a test statistic with one degree of freedom. However,
if this procedure has to be applied for each item, then the number of estimation
procedures would be one plus the number of common items in both cycles.

Wald-type tests

To apply this class of statistical tests, the parameters of the model have to be
estimated under the general model. In the DIF example this means that the
difficulty parameter for the target item has to be estimated as a different parameter
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in both cycles. Denote these parameters as �i1 and �i2 respectively. Then the
restricted model, which is the null hypothesis, states that

H0 : �i1 – �i2 = 0, (11)

and if this hypothesis is true, then it may be expected that the estimates of both
parameters are reasonably close to each other. The test statistic is just the squared
difference between the two estimates divided by the (estimated) variance of the
difference, that is:

(12)

The right-hand side of the preceding equation makes clear that the estimates of
both parameters are correlated in general, and that one has to take the covariance
of the estimates into account when computing the test statistic. Wi is
asymptotically chi-squared distributed with one degree of freedom.

This example is a bit artificial because it reflects a procedure where one wants
to test DIF only for a single item, while in the construction of a measurement
model one would usually want to investigate DIF for all items. In such a case
the general model states that in the two cycles all item parameters could possibly
have different values, and estimating the difficulty parameters under this model
amounts to estimating the parameters separately from the data of the two cycles.
One can then test the null hypothesis (11) for each item in turn, and the test
statistic is still given by (12) but in this case the covariance term vanishes because
item parameters have been estimated from independent samples. It is also possible
to estimate all these hypotheses jointly. The test statistic in this case is

W = (�̂1 – �̂2)�(	1 + 	2)–1(�̂1 – �̂2), (13)

where �j (j = 1, 2) denotes the vector of parameter estimates and 	 denotes the
(estimated) variance-covariance matrix of the estimates. The test statistic is
asymptotically chi-squared distributed and the degrees of freedom are equal to
the number of restrictions implied by the null hypothesis.

To make results of surveys comparable across cycles, the tests administered
in both cycles must have some items in common, but usually they also contain
unique material. Of course, the W-statistic to detect DIF can only be applied
to the common items; suppose there are m of them. Furthermore, assume
parameters have been estimated separately for the two cycles. However, this means
that in the two estimation procedures the normalization is free, and one can
always choose two normalizations such that the W-statistic takes an arbitrary,
large value, for example, by setting the average of the common parameters in
the first cycle equal to zero and in the second cycle to an arbitrary non-zero
value. Therefore one must choose a normalization such that the estimates are
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meaningfully comparable across the two cycles. A good way of accomplishing
this is to make the sum of the parameters of the common items in both cycles
equal to each other. The number of degrees of freedom for the test is then 
m – 1.

Lagrange multiplier tests

In this class of tests, parameters are estimated only in the restricted model (that
is, assuming that the null hypothesis is true). In the DIF example, this means
that item parameters are estimated jointly from the data of the two cycles. The
idea behind the test procedure is that at the maximum of the likelihood function,
the change of the function with respect to the unrestricted parameters will be
small and hence that the partial derivative of the (log-)likelihood function with
respect to the unrestricted parameters will be close to zero. It has been shown
that the Pearson-like tests (with proper correction for the fact that the parameters
are estimated from the data) are test procedures of this class. The advantage of
the Pearson-like approach, however, is that one does not need to write down
explicitly the likelihood function for the general model but that one can suffice
with the specification of one or more contrast vectors. In the case of the DIF
example, this amounts to specifying the target item and indicating for each
observed response pattern in which cycle it has been observed. A more compli-
cated example to test the unidimensionality assumption in the Rasch model is
discussed in detail in Verhelst (2001).

3.4 Informal procedures

Every statistical model, no matter how complicated it may be, is a simplification
of reality, and therefore it cannot be the ‘true’ model. This implies that if one uses
tests with enough power, for example by using huge samples, these tests will
eventually all lead to significant results, and reasoning in a pure formal way, one
cannot but reject the model. The search for the true model is vain, and a much
more comfortable approach is to search for a useful model – that is, a model that
represents (and can reproduce) important characteristics of the real world, where
‘important’ is always to be understood as important to one’s purposes. The model
of the sea level as a flat surface is useful for geography, but it will not be of any
use for a shipwrecked person fighting to survive in a storm.

Therefore, a far more constructive attitude towards statistical models than
the pure formal binary-decision directed attitude of statistical testing (accept or
reject) is to try to come to a judgment if the model is a reasonably good approx -
imation to reality or not. There is a lot one can do to judge on this reasonableness,
and the actions one can take could be summarized under the name ‘give your
model a chance’. We discuss some examples below.

Suppose that for some research purposes one has administered a test of 40
arithmetic items to a sample of young students. The general assumption is that
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the scores obtained on this test will reflect the mathematics ability of the students,
and a more fine-grained assumption is, for example, that the Rasch model (or
any other model, for that sake) might be well suited to describe the empirical
data. There are a number of things that one could (and should) do before starting
the IRT analysis. Three suggestions follow.

Inspect the histogram of the score distribution. An unexpectedly high frequency
of zero (or very low scores) may point to students who were not really taking
the test.

Be sure to have a reasonable prior estimate of the difficulty of the items. If an
item judged to be relatively easy by the test constructor turns out to be very
difficult empirically, this may point to very practical problems such as an error
in the key for multiple choice items or the effect of time pressure.

If data are collected through a two-stage sampling (first school, then students within
schools), something might have gone wrong in a particular school (testing time too short,
misunderstanding of the instructions, and so on). An efficient way to find out if such
systematic errors have occurred is to run an analysis with an overparameterized
model that makes very weak assumptions about the data. A good candidate is
homogeneity analysis (Gifi 1990; Michailidis and De Leeuw 1998). In this analysis,
the data are considered as nominal variables. The outcome of the analysis
represents students as well as item categories as points in a Euclidean space of low
dimensionality. The point representing the student is the midpoint (centre of
gravity) of all the category points that represent his response pattern. Schools can
be represented as the midpoint of all the student points of the students belonging
to the same school. If the analysis is done in two or three dimensions, a graphical
representation can be constructed where all schools are represented as a single point,
and outlying schools are easily detected.

An important assumption of the IRT models discussed in this chapter is
unidimensionality. One can apply a formal test of this assumption, as was
mentioned in Section 3.3, but a simple Exploratory Factor Analysis (EFA) may
be of equal use. In Figure 9.7, the factor pattern resulting from a factor analysis
with two factors is displayed graphically. The data are the responses of 1,332
Hungarian students on a reading and listening test for English (the author is
indebted to Euro Examinations in Budapest and, especially, to Zoltán Lukacsi
for the permission to use the language test data for illustrative purposes). The
reading part and the listening part both consist of 25 binary items. In the graph,
the items are not identified, only the skill they belong to is indicated: R for
reading and L for listening. It can be clearly seen that the vertical axis (the
second factor) distinguishes between these two skills, and therefore it might be
wiser to consider the two skills as representing two different abilities, rather than
to treat them as representing the same ability.

Some comments are in order when using factor analysis on binary data:

• It is highly advisable to use tetrachoric correlations instead of Pearson
product-moment correlations, as the latter tend to produce more factors
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that are barely interpretable. For partial credit items, polychoric correlations
are the preferred ones.

• The matrix of tetrachoric (or polychoric) correlations computed from finite
data sets is often not positive semi definite (psd) and therefore cannot be
used as input for factor analytic procedures that presuppose a psd correlation
matrix, such as maximum likelihood factor analysis. To cope with such a
situation one can follow two different strategies; either the computed
correlation matrix is replaced by a similar one that is psd (Knol and Ten
Berge 1989), or a factor analytic procedure is chosen that does not require
a psd matrix as input. Good and easily available techniques include principal
factor analysis (Harman 1960) or the minimizing residuals (MINRES)
method (Harman and Jones 1966). If only exploratory analyses are done,
using techniques that do not require a psd input matrix is the easiest way.
For confirmatory analyses, the requirement of a psd matrix is unavoidable.

4 Applying IRT models in EER

The theory described in the preceding sections is aimed at preparing one for an
important decision: accepting or rejecting a specific measurement model. It has
been argued that acceptance of an IRT model does not mean that the model
is perfect, but that it is good enough to be used in practical applications. For
example, such a decision can help researchers in the area of EER to find out
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whether a specific IRT model can be used in order to estimate the latent ability
of individual students in specific outcomes of schooling and then search for factors
that may explain variation in student achievement. Thus, the present section of
this chapter is meant to treat some approaches to this kind of problem and to
present how researchers in the area of EER can make use of different IRT models
to develop appropriate psychometric scales and search for the impact of specific
factors on student achievement. More specifically, in Section 4.1 the estimation
problem of individual latent abilities is treated. The next two sections treat the
general problem of latent regression and explain how EER researchers can apply
a multiple regression analysis where the dependent variable is an unobserved
quantity, the latent ability of individual students. In Section 4.3, latent regression
is treated but in this case the dependent variable is replaced by a proxy (that is,
an estimate of the latent ability). The results of a simulation study that provides
support for this approach are also presented. Finally, we draw some more general
implications for the development of EER that are concerned with the use of
different IRT models to generate valid and reliable measures of student achieve-
ment and to identify the impact of effectiveness factors on student achievement.

4.1 Estimating latent abilities

Maximum likelihood (ML) estimates

Acceptance of a measurement model on the basis of a well designed and
thoroughly investigated measurement model means in practice that the item
parameters of the model are replaced by their estimates and subsequently treated
as known quantities. The likelihood of an observed response pattern x on k
binary items is then

(14)

which now only depends on a single unknown quantity, �, and the value of �
that maximizes the right-hand side of (14) is the maximum likelihood estimate
of �. Once the item parameters are fixed, the 2PLM is also an exponential family
model, and the sufficient statistic for � is the weighted score (with the
discrimination parameters as weights). Denoting the sufficient statistic for �
generically as s, the ML estimate of � in the 2PLM is the solution of the
likelihood equation

(15)

For the Rasch model it suffices to replace the �-parameters by one. Some of
the models discussed in previous sections, however, do not belong to the
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exponential family, even when the item parameters are fixed. The 3PLM is such
a case, as well as the graded response model and all normal ogive models. For
these models there is no sufficient statistic for �, and to find the ML estimate,
the right-hand side of (14) must be maximized.

A disadvantage of ML estimates is that (15) has no solution if s is zero or s
equals the maximal score because the right-hand side of (15) is always a positive
number (all response probabilities are positive), and it is always smaller than the
maximal score, because all response probabilities are strictly smaller than one.

One of the attractive features of maximum likelihood estimation is the
availability of the standard errors of the estimates, which are derived from a
quantity known as Fisher information. The information function is defined as
the negative of the expected value of the second derivative of the log-likelihood
function:

(16)

The expected value is to be taken over all possible response patterns. The
relationship with the standard error of the ML estimate �̂ is this:

(17)

Notice that in (17) two approximations are used. The first one is there because
the result is only valid asymptotically – that is, when the number of items tends
to infinity. The second one is needed because the information function is a
function of �, and since � is not known, its value is replaced by a proxy, the
estimate.

In the 2PLM the information function is given by

(18)

Conditional unbiasedness

It seems a reasonable requirement that upon (independent) replicated adminis-
trations of the same test, the average estimate of the ability equals the true ability.
Formally the requirement is that

E(�̂|�) – � = 0. (19)

The estimator �̂ is said to be conditionally unbiased if (19) holds for all values
of �.

I E
d L x

d
( )

( ; )θ θ
θ

= −
⎡

⎣
⎢

⎤

⎦
⎥

2

2

ln

SE
I I

(ˆ)
( ) (ˆ)

.θ
θ θ

≈ ≈1 1

I f fi
i

k

i i( ) ( )[ ( )].θ α θ θ= −
=
∑ 2

1

1

IRT models  209



The maximum likelihood estimator of � is conditionally biased (Lord 1983).
In Figure 9.8, the bias of the ML estimator (dashed curve) – that is, the value of
the left-hand side of (19), is displayed graphically for a test of 40 items complying
with the Rasch model. The item parameters range from –1.05 to +1.7 with an
average value of 0.5. For zero and perfect scores, values of –5 and +5 have been
used respectively as estimates of the latent ability.

In the figure (dashed curve) it is clearly seen that the bias is zero only for
one value of �, �0 say. For values larger than �0, the bias is positive, meaning
that on the average, the real value of � will tend to be overestimated by the ML
estimate, while for values smaller than �0, they will be underestimated. In general,
this means that the ML estimates are stretching out the real values of �. The
relation between the item parameters and the value of �0 has not yet been
determined mathematically but in a number of simulations it has appeared that
�0 coincides with the point of maximal information. However, independently of
the correctness of the previous statement, it should be kept in mind that the
value of �0, the bias function as displayed in the figure and the information
function are completely determined by the item parameters and are not in any
way related to the distribution of the latent variable � in whatever population.

Suppose that one wants to compare the ability of girls and boys, for example
by a t-test, and one uses the ML estimates as proxies for �. If the average estimate
of the girls is larger than �0 and the average of the boys is smaller, then the
difference of the averages will be an overestimation of the true difference between
the two groups.

The conditional bias and the fact that the estimate does not exist for zero
nor for perfect scores makes the ML estimates unsuitable for statistical
applications. The results discussed here apply to models of the logistic family
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(the Rasch model, OPLM, (G)PCM, 2PLM and 3PLM). Similar theoretical
results for the GRM and the normal ogive models are not known.

Weighted maximum likelihood (WML) estimates

Although it is not possible to find an estimator of � that is conditionally unbiased,
Warm (1989) developed an estimator that is almost unbiased. The estimate is
the value of � that maximizes the weighted likelihood – that is, the product of
the likelihood function multiplied by a weight function that depends on � but
not on the response pattern x:

w(�) × L(�; x) (20)

Warm’s purpose was to find the weight function such that the bias disappeared
as much as possible. It turned out that in the Rasch model and in the 2PLM
the weight function is given by

the square root of the information function. He also found the weight function
for the 3PLM, but in that case it is more complicated.

This estimator, referred to as the weighted maximum likelihood or Warm
estimator, is almost unbiased for a wide range of �-values. Moreover, the estimator
exists for all possible values of the score, including zero and perfect scores. For
extreme values of �, the bias remains, but it is in the opposite direction from
the bias of the ML estimator: for values much higher than the point of maximal
information the bias is negative and for small values it is positive – the estimates
tend to shrink compared to the true values. In Figure 9.8 (solid line) the bias
is displayed graphically and can be compared directly to the bias of the ML
estimator. Notice that the bias is very small (less than 0.01 in absolute value)
in the range (–2.5, 3), which is much wider than the range of the difficulty
parameters.

The availability of an (almost) unbiased estimator is a great advantage for
statistical applications, as will be discussed in the next sections.

4.2 Regression with measurement error

Multiple regression analysis is probably the most widely used analysis tool to
investigate the relation between educational performances and one or more
background variables, such as gender or socio-economic status. In EER, the
most interesting variables are usually constant within schools but vary across
schools, while the basic measurements – the performances of the students – are
collected at the student level, necessitating a two-level (or more generally, a
multilevel) approach to the analysis of the data (see Chapter 11). In this chapter,

w I( ) ( ),θ θ=
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the discussion will be restricted to a simple linear two-level model with a random
intercept, which may be represented as follows:

(21)

The dependent variable Yij is some observed measure on student i in school
j. The p regressors z(1), . . . , z(p) are fixed constants that do or do not vary across
students of the same school. Notice that the characterization of the model as 
a two-level model does not depend on this variation, but on the presence of
the latter two terms, uj and �ij in the right-hand side of (21). Both are to be
considered as realizations of two random variables: the random intercept at the
school level (uj) and the residual at the student level (�ij). In most applications
of multilevel modelling these two random variables are considered as statistically
independent, and as being normally distributed. In the simplest case, these are
the two assumptions:

�ij ~ N(0, �2) and uj ~ N(0, �2). (22)

The estimation problem in multilevel analysis is then to obtain estimates of 
the regression coefficients �1, . . . , �p and of the two variance components �2

and �2.
A conceptual problem is associated with the fact that the observed dependent

variable Y is never a pure operationalization of the concept in which one is
interested, but is in a sense polluted by measurement error, implying that at the
lowest level, true variance and error variance are subsumed in �2

, or equivalently,
that the residual variance will increase as the reliability of the measurement
decreases. Variation in the reliability has the following effects on the results of
the multilevel regression analysis:

• There is no bias in the estimates of the regression coefficients (Cook and
Campbell 1979, Chapter 4).

• The standard errors of the regression coefficients increase with decreasing
reliability.

• The residual variance �2 increases if the reliability decreases.
• The higher level variance �2 is not affected in a systematic way. Although

no proof seems to be available for this, it appears to be the case in a
significant number of simulation studies.

The latter two bullet points have consequences when the intra-class correlation
� is considered:

(23)
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Using the estimates of both variance components to estimate � will not affect
the numerator of (23) but will systematically inflate the denominator as the
reliability decreases, and this will affect a clear interpretation of the intra-class
correlation, a variable of considerable importance in EER.

Latent regression

As in IRT, where the concept to be measured is at the centre of the model, it
would be nice if one could carry out a regression analysis where the dependent
variable is the latent variable. So the basic regression model given by (21) is
changed to

(24)

The term latent regression is shorthand for ‘regression model where the
dependent variable is not directly observed’. Basically, two approaches can be
used to analyse model (24): either one substitutes the latent observation �ij by
a proxy – an estimate of it – or one tries to carry out the analysis without using
proxies. In the first approach, an estimation error is re-introduced, but not in
the second approach. The use of the first approach is recommended here and
is presented in the final section of this chapter. For the second approach, see
Verhelst and Verstralen (2002).

4.3 Latent regression using a proxy for �

The fact that in ordinary regression the estimates of the regression parameters
are unbiased when noise is added is due to the conditional unbiasedness of the
observed score in Classical Test Theory: the expectation of the observed score
(under equivalent replications) is by definition the true score. If we want the
same unbiasedness when using proxies in latent regression, it is clear that the
proxies will have to be conditionally unbiased. Although such proxies do not
exist in the strict sense, there is a reasonable approximation with the Warm
estimates in the logistic family of IRT models.

The present section is mainly meant as an illustration of a simple multilevel
analysis using the Warm estimates as the dependent variable. In the first part of
the section, a simulation study is reported. Data are generated following the
Rasch model on a test consisting of 40 items in total; the 20 positive item
parameters are 8*0.5, 5*1, 4*1.5, 2*2 and 1*2.5. The 20 negative ones are
just the opposite of the positive parameters. In both studies two background
variables are used, which we will refer to as gender (with two values) and region
(with three values). The regressors are the constant and three dummy variables
(one for gender and two for regions); ‘boys’ and ‘region 1’ are used as reference
categories respectively. The true regression parameters are 0.9 for girls, 0.3 for
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region 2 and 0.7 for region 3. The average ability in the combined reference
categories (boys in region 1) is –1.1, which is the true parameter of the intercept.

One thousand response patterns per region are generated. It is assumed that
per region 40 schools are sampled and within each school ten students are
sampled. The between school variance, �2 is set at 0.15 and the within school
variance, �2 at 0.85. In each school the ‘gender’ of the simulated student is
chosen at random, such that the number of boys across schools is not constant
but follows a binomial distribution.

The generation of the data proceeds as follows:

1 For each region, the regional component is determined. For region 1, this
is just the intercept (– 1.1); for region 2, this is the intercept plus the effect
of region 2: –1.1 + 0.3 = –0.8.

2 For each school within the region, a school effect is generated at random
from N(0, �2) and added to the regional component.

3 For each student within the school the gender is determined at random. If
the result is ‘girl’, the gender effect is added to the regional component,
otherwise no change occurs. Next, a random variate generated form 
N(0, �2) is added to the systematic effects of region and gender. The
resulting sum is the latent value associated with the sampled student. This
value is kept constant in step 4.

4 A response pattern is generated using the 40 item parameters and the 
�-value from step 3.

If steps 1 to 4 are completed for all regions and schools, the result is a data
set with item responses and a set of generated �-values that are subsequently
analysed in three different ways. For each analysis a multilevel model is used as
given by the right-hand side of equation (21), but the dependent variable differs
across the analyses. In the first analysis, the dependent variable is the true 
�-value generated for each student; in the other two analyses the Warm estimate
of the �-value is used. As this estimate is completely determined by the score
and by the item parameters, two different estimates could be used. In analysis
2, the dependent variable is the Warm estimate computed for each obtained
score and using the true item parameter values. In the third analysis, CML
estimates of the item parameters were obtained, and these estimates were used
to compute the Warm estimate for each student.

Generating a data set according to the above described procedure and carrying
out the three analyses constitutes one replication. One thousand replications
were carried out. In Table 9.2 the results are displayed. Averages and standard
deviations are computed across replications.

The following observations arise from Table 9.2:

1 The standard deviations across replications are good estimates of the standard
errors, as they are affected by sampling error: the school effects (uj), as well
as the latent values, are sampled anew in each replication.
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2 The most important result is that all average parameter estimates, except
the within-school variance (�2), are very close to their true value.

3 The within-school variance (�2) is much affected by the kind of analysis,
and the results are in line with those discussed above: the Warm estimates
contain an estimation error, and this error is reflected in a larger estimate
of the residual variance. If we take the average estimated variances as our
best guess, then the estimated intraclass correlation, using estimates of � is
0.148/(0.148 + 1.012) = 0.128, while the true value is 0.15. This may not
look very dramatic, but the test used has a reliability of around 0.9, which
is quite high, and may not always be reached in educational research.

4 The table does not show any but trivial differences between the analyses
using Warm estimates: whether the true item parameters are used or whether
the estimated ones are used, it does not make any difference, although the
standard errors of the item parameter estimates have values between 0.042
and 0.065. One should, however, be careful in generalizing this result. For
example, using very small calibration samples might have an influence on
the results of the regression analysis. In large studies such as international
surveys or national assessment programmes, the sample size used is usually
well comparable to the one used in the simulation study.

Although the simulation study reported here is restricted in scope, it neverthe-
less seems justified to draw the following conclusions:

• Using (almost) unbiased estimates of the latent ability as the dependent
variable in multilevel regression does not lead to systematic distortions of
the regression parameters, with the exception of the level one variance, which
is inflated by the estimation errors. This makes the situation fully comparable
with the use of multiple regression analysis in the framework of Classical
Test Theory.
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Table 9.2 Results of the simulation study

Constant Region 2 Region 3 Girl �2 �2

Dependent True –1.1 0.3 0.7 0.9 0.15 0.85
variable parameters

� average –1.100 0.299 0.700 0.902 0.148 0.850
SD 0.052 0.067 0.068 0.035 0.020 0.023

�̃ average –1.100 0.299 0.700 0.901 0.148 1.011
SD 0.054 0.069 0.071 0.038 0.021 0.030

�̂ average –1.100 0.299 0.700 0.901 0.148 1.012
SD 0.054 0.069 0.071 0.038 0.021 0.030

�̃ = Warm estimates based on true item parameters

�̂ = Warm estimates based on estimated item parameters (CML)



• The practical advantage of this approach is that multilevel analyses can be
carried out using standard software. In fact, the estimates of the latent
ability can be treated as observed variables, and they are comparable even
in cases where the test forms used are not equivalent (incomplete designs).

• The key concept in producing these advantages is of course the conditional
unbiasedness of the estimates. In the logistic family, the Warm estimator
seems to do a good job, although one has to be careful to watch for
remaining bias in ranges of the latent variable where the information function
is too low. For other IRT models, these kinds of unbiased estimators are
not available, and developing them might be a useful research topic, especially
for researchers in the area of educational effectiveness who make use of IRT
models to identify the impact on student achievement of effectiveness factors
at different levels.

Finally, we would like to argue that this chapter has shown that researchers
within EER can make use of IRT models to generate reliable and valid estimates
of student achievement and use them to identify the impact of specific factors
on achievement. This is especially true when different types of test are used to
collect data on achievement at different time points, and researchers should
consider the IRT models when analysing data from different incomplete designs
of administering tests to different age groups of students and at different time
points. Thus, by making use of different IRT models and selecting the most
appropriate to be used in each case, EER researchers will not only be able to
develop the methodology of their studies further but also to improve the
theoretical framework of the field by raising issues such as the measurement of
the long- and short-term effect of schools, which will help us better understand
the complex process of change.
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Theory
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Introduction

It is well known that most measurement devices are not perfect. Physical scientists
have recognized this fact for many years and have learned to repeat their
measurements many times to obtain results in which they can be confident.
Repeated measures can provide the average of a set of recurring results, which
is expected to provide a more precise estimate of what is being appraised than
just a single measurement. Unfortunately, within the educational arena commonly
obtained measurements cannot be repeated as straightforwardly as in the physical
sciences. Because the results of measurements in education can have a profound
influence on an individual’s life, the derivation and accuracy of the scores have
been the subject of extensive research in the so-called psychometric literature.
There are currently two major psychometric theories for the study of measure-
ment procedures: random sampling theory and latent trait theory, which is 
also known as Item Response Theory (Suen 1990). Within random sampling
theory there are two approaches, the Classical Test Theory approach and the
Generalizability Theory approach (Cronbach et al. 1963; Cronbach et al. 1972;
Gleser et al. 1965), whereas within IRT there are more than two dozen
approaches (Bond and Fox 2001, Chapter 9; Embretson and Reise 2000).

This chapter provides an overview of Generalizability Theory and shows how
it can be used to design, assess and improve the dependability of measurement
procedures. In this way researchers within EER can make use of Generalizability
Theory in testing the quality of their data. To gain a perspective from which to
view the application of this approach and to provide a frame of reference,
Generalizability Theory is initially compared with the traditionally used classical
reliability theory approach. The first section of this chapter gives an overview 
of the fundamentals of Generalizability Theory. Although Generalizability 
Theory can be applied in a variety of scenarios, this section spotlights the simple
one-facet model, which is the most common measurement procedure used 
and readily provides a mechanism for a comparison of results obtained with 
Classical Test Theory. Different types of error variance and generalizability
coefficient estimates are then introduced to illustrate the distinct advantages of
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Generalizability Theory over Classical Test Theory. The next sections give an
overview of the basic concepts extended to multifaceted and multivariate measure -
ment designs. A brief summary of computer programs that can be used to
conduct generalizability analyses are presented in the fourth section. The final
section introduces some recent advances and extensions to Generalizability
Theory modelling that can address significant methodological issues of effective -
ness studies.

Overview of fundamentals

Generalizability Theory is a random sampling theory concerning the dependability
of behavioural measurements (Shavelson and Webb 1991). Because of its ability
to model a wide array of measurement conditions through which a wealth of
psychometric information can be obtained (Marcoulides 1989), Generalizability
Theory has even been proclaimed as ‘the most broadly defined psychometric
model currently in existence’ (Brennan 1983: xiii). Although many researchers
were instrumental in its original development (Burt 1936, 1947; Hoyt 1941),
it was formally introduced by Cronbach and his associates (Cronbach et al.
1963; Cronbach et al. 1972; Gleser et al. 1965). Since the major publication
by Cronbach et al. (1972), Generalizability Theory has received much attention
in the literature as a more liberalized approach to measurement than Classical
Test Theory.

The fundamental tenet of the Classical Test Theory approach is that any
observed score (X) for an individual obtained through some measurement 
device can be decomposed into the true score (for example, with a measure of
ability this would represent the true ability of an individual) and an unsystematic
random error (E) component. This can be symbolized as: X = T + E. The better
a meas urement device is at providing an accurate value for T, the smaller the
magnitude of the E component will be. Estimation of the degree of accuracy with
which the T component is determined can be assessed using a so-called reliability
coefficient. The reliability coefficient is typically defined as the ratio of the true score
variance (�2

T) to the observed score variance (�2
X or equivalently �2

T + �2
E). Thus,

the notion of the reliability coefficient corresponds to the proportion of observed
score variability that is attributable to true score variability across individuals, which
essentially increases as the occurrence of error decreases.

A number of different strategies can be used to obtain estimates of the
reliability coefficient in Classical Test Theory. For example, a test-retest reliability
estimate can be used to provide an indication of how consistently a measure-
ment device rank-orders individuals over time. This type of reliability requires
administration on two different occasions and examining the correlation between
observed scores on the two occasions to determine stability over time. Internal
consistency is another method to obtain reliability and considers the degree 
to which test items provide similar and consistent results about individuals.
Another method to estimate reliability involves administering two so-called
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‘parallel’ forms of the same test at different times and examining the correlation
between the forms.

Unfortunately, many of the assumptions of Classical Test Theory are often
problematic, particularly the existence of an undifferentiated error in measure-
ment. For example, in the above-mentioned strategies for estimating reliability,
it is quite unclear which interpretation of error is most suitable. To make things
worse, one may be faced with the uncomfortable fact that scores obtained from
measurement devices used on the same individuals often yield different values
on these reliability coefficients. In contrast, Generalizability Theory acknowledges
that multiple sources of error may simultaneously occur in measurement (for
example, errors attributable to different testing occasions and/or different test
items) and enables the estimation of the multifaceted error effects.

In their original formulation of Generalizability Theory, Cronbach et al.
(1972) advocated that observed scores obtained through a measurement
procedure be gathered as a basis for making decisions or drawing conclusions.
Cronbach et al. (1972) provided the following argument for their perspective:

The score on which the decision is to be based is only one of many scores
that might serve the same purpose. The decision maker is almost never
interested in the response given to the particular stimulus objects or
questions, to the particular tester, at the particular moment of testing. Some,
at least, of these conditions of measurement could be altered without making
the score any less acceptable to the decision maker. That is to say, there is
a universe of observations, any of which would have yielded a usable basis
for the decision. The ideal datum on which to base the decision would be
something such as the person’s mean score over all acceptable observations,
which we shall call his ‘universe score.’ The investigator uses the observed
score or some function of it as if it were the universe score. That is, he
generalizes from sample to universe.

(Cronbach et al. 1972: 15)

Based upon the above contention, Cronbach et al. (1972) placed the notion
of a ‘universe’ at the heart of Generalizability Theory. All measurements are
deemed to be samples from a universe of admissible observations. A universe is
defined in terms of those aspects (called ‘facets’) of the observations that
determine the conditions under which an acceptable score can be obtained. For
example, the facets that define one universe could be personality tests adminis-
tered to new employees during their first week of employment. Since it is possible
to conceive of many different universes to which any particular measurement
might generalize, it is essential that investigators define explicitly the facets 
that can change without making the observation unacceptable or unreliable. For
example, if test scores might be expected to vary from one occasion to another,
then the ‘occasions’ facet is one defining characteristic of the universe and
multiple testing times must be included in the measurement procedure. The
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same would hold true for the choice of test items and other aspects of the meas -
ure ment procedure. Ideally, the measurement procedure should yield information
about an individual’s universe score over all combinations of facets, but in reality,
investigators are limited in their choice of particular occasions, items or other
facets. The need to sample facets introduces error into the measurement
procedure and limits investigators to estimating rather than actually measur-
ing the universe score. Thus, the Classical Test Theory concept of reliability is
replaced by the broader notion of generalizability (Shavelson et al. 1989). Instead
of asking ‘how accurately observed scores reflect corresponding true scores’,
Generalizability Theory asks ‘how accurately observed scores permit us to
generalize about persons’ behaviour in a defined universe’ (Shavelson et al.
1989). Although in most instances some attribute of persons will usually be the
object of measurement, it is possible to consider other facets as the object of
measurement. In such a case, the facet for persons is then treated as an error
component. This feature has been termed the ‘principle of symmetry’ (Cardinet
et al. 1976).

A one-facet crossed design

A common educational measurement procedure is to administer a multiple-choice
test consisting of a random sample if ni items from a universe of items to a
random sample of np persons from a population of persons. Such a design is
called a one-facet person-crossed-with-items (p × i) design because the items
facet is the only potential source of error included in the measurement procedure.
A one-facet design can be viewed as an analysis of variance (ANOVA) design
with a single random or fixed factor. Denoting the observed score of person p
on item i as Xpi, one can decompose the score as (provided below in both equa -
tion and verbal statement form in terms of effect decomposition):

Xpi = � + (�p – �) + (�i – �) + (Xpi – �p – �i + �)

= grand mean + person effect + item effect + residual effect,

where �p = EiXpi is the person’s universe score (that is, the expected value of
the random variable Xpi across items), �i = EpXpi is the person population mean
for item i, and � = EpEiXpi is the mean over both the person population and
universe of possible scores (the entire item universe). Because there is only one
observation for each person–item combination, the residual effect corresponds
to a score effect attributable to the interaction of person p with item i confounded
with experimental error. Cronbach et al. (1972) represented this confounding
with the notation pi,e. The associated observed variance decomposition of these
effects is as follows:

�2(Xpi) = �2
p + �2

i + �2
pi,e,
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where the symbols on the right-hand side correspond respectively to the variance
due to persons, items and the residual effect.

Generalizability Theory places considerable importance on the variance com -
ponents of the effects in the model because their magnitude provides information
about the potential sources of error influencing a measurement. The estimated
variance components are the basis for determining the relative contribution of
each potential source of error and for determining the dependability of a
measurement. In actual practice the estimation of the variance components is
achieved by calculating observed mean squares from an ANOVA, equating 
these values to their expected values and solving a set of linear equations. Table
10.1 provides the ANOVA results from a hypothetical one-facet study in which
a sample of 20 students were administered a five-item test. It is important to
note that for purposes of illustration we have intentionally kept the number of
persons and items small. In most pragmatic studies these numbers would likely
be much larger. Table 10.1 also provides the computational formulae for deter -
mining the variance components associated with the score effects in the model.
Estimation of the variance components is basically achieved by equating the
observed mean squares from the ANOVA to their expected values and solving
the set of linear equations; the resulting solution for the components comprises
the estimates (Cornfield and Tukey 1956).

It is important to note that other procedures can also be used to estimate
variance components. Numerous methods of estimation that can be used to pro -
vide the same information as ANOVA have been developed, including Bayesian,
minimum variance, restricted maximum likelihood and covariance structure
methods (Marcoulides 1987, 1989, 1990, 1996; Shavelson and Webb 1981).
These methods often provide more accurate estimates of variance components
than ANOVA in cases involving small sample sizes, dichotomous data, unbalanced
designs or data with missing observations (Marcoulides, 1987, 1996; Muthén
1983). ANOVA is much easier to implement, however, and it continues to be
the most commonly used estimation method in Generalizability Theory. Because
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Table 10.1 ANOVA estimates of variance components for a hypothetical one facet
crossed design

Source of variation df SS MS Variance Expected 
components mean squares

Persons (p) 19 180.22 9.48 1.73 � 2
pi,e + ni�

2
p

Items (i) 4 25.36 6.34 0.27 � 2
pi,e + np�

2
i

Residual (pi,e) 76 63.84 0.84 0.84 � 2
pi,e

Note: The estimated variance components for the above one-facet design are calculated as follows:
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estimated variance components are the basis for indexing the relative contribution
of each source of error and determining the dependability of a measurement,
the estimation of variance components has been referred to as the ‘Achilles heel
of G theory’ (Shavelson and Webb 1981).

Types of error variances

Relative and absolute decisions: Generalizability Theory distinguishes between
two types of error variance, which correspond to relative decisions (that is,
decisions about individual differences between persons) and absolute decisions
(that is, decisions about the level of performance). Relative error variance (also
called �-type error) relates to decisions that involve the rank ordering of
individuals. In such instances, all sources of variation that include persons are
considered measurement error. For example, in a one-facet design the relative
error variance (symbolized by �2

�) includes the variance components due to the
residual averaged over the number of items used in the measurement. Using the
results in Table 10.1, this value is 0.17.

The square root of this index (�� = 0.41) is considered the �-type (relative)
standard error of measurement. Using the value of ��, a confidence interval 
that contains the universe score (with some degree of certainty) can also be
determined. For example, a 68 per cent confidence interval for a person with
an overall score of 8 would extend from 7.59 to 8.41 (that is, 8 ± Z�/2��). It
is important to note that it is traditional to assume a normal distribution in
order to attach a probability statement to the confidence interval. Generalizability
Theory makes no distributional assumption about the form of the observed scores
or the scores’ effects, but such an assumption is required to establish appropriate
confidence intervals.

When dealing with issues about whether an examinee can perform at a pre-
specified competence level, it is the absolute error variance (called a �-type error)
that is of concern. The absolute error variance reflects both information about
the rank ordering of persons and any differences in average scores. For example,
in the one-facet design the absolute error (denoted as �2

�) includes the variance
components due to both the item effect and the residual effect averaged over
the number of items used in the measurement. Using the results in Table 10.1,
this value is 0.22. The square root of this index (��= 0.47) can also be used to
determine a confidence interval that contains the universe score. For example,
a 68 per cent confidence interval for a person with a score of 8 would extend
from 7.53 to 8.47 (that is, 8 ± Z�/2��).

Generalizability coefficients

Although Generalizability Theory underscores the importance of variance compo-
nents, it also provides generalizability coefficients that can be used to index the
dependability of a measurement procedure (the value ranges from 0 to 1.0, with
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higher values reflecting more dependable procedures). Generalizability coefficients
are available for both relative (symbolized by E�2

�) and absolute error (symbolized
by �2

� or 
 – the notation is often used interchangeably). For the one-facet
example design these values are as follows:

and

We note that the value of E�2
� in the one-facet design is equal to the Classical

Test Theory internal consistency estimate, Cronbach’s coefficient � for items
scored on a metric and equal to Kuder-Richardson Formula 20 (KR-20) and
Cronbach’s coefficient �-20 when items are scored dichotomously.

Brennan (1983) indicated that the �2
� (or 
) generalizability coefficient may

be viewed as a general purpose index of dependability for domain-referenced
(criterion-referenced or content-referenced) interpretations of examinee scores.
The observed examinee score is interpreted as being representative of the universe
of the domain from which it was sampled and interest is placed on the depend-
ability of an examinee’s score that is independent of the performance of others
(that is, independent of the universe scores of other examinees). However, if
emphasis is placed on the dependability of an individual’s performance in relation
to a particular cut-off score (for example, a domain-referenced test that has a
fixed cut-off score and classifies examinees who match or exceed this score as
having mastered the content represented by the domain), a different general-
izability index must be computed (Brennan and Kane 1977). The index is
denoted by 
(�) and represents domain-referenced interpretations involving a
fixed cut-off score. The value of (�) is determined by:

For computational ease, an unbiased estimator of (� – �)2 is determined by
using (X̄ – �)2 – �2

X̄. Where �2
X̄ represents the mean error variance and represents

the error variance involved in using the mean (X̄) over the sample of both persons
and items as an estimate of the overall mean (�) in the population of persons
and the universe of items; the smaller the mean error variance the more stable
the population estimate (Marcoulides 1993). Using the estimates obtained above,
the mean error variance is equal to:
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With the cut-off score in the hypothetical study set at � = 8 and X̄ = 6.36, the
value of 
(�) is equal to 0.95.

As demonstrated above, a generalizability analysis enables the pinpointing of
the sources of measurement error and the determination of exactly how many
conditions of each facet are needed in order to achieve optimal generalizability
for making different types of future decisions (for example, relative or absolute
– Marcoulides and Goldstein 1990, 1991, 1992). Indeed, generalizability co-
efficients for an assortment of studies with alternate numbers of items can be
computed in much the same way as the Spearman-Brown Prophecy Formula is
used in Classical Test Theory to determine the appropriate length of a test. For
example, with ni = 1 the generalizability coefficients for relative and absolute
decisions are E�2

� = 0.67 and �2
� = 0.61, whereas with ni = 10 the coefficients

are E�2
� = 0.95 and �2

� = 0.94. We note that because the items are a source of
measurement error in the example design, increasing the number of items in
the measurement procedure increases the generalizability coefficients.

Generalizability Theory refers to the initial study of a measurement procedure
as a generalizability (G) study (Shavelson and Webb 1981). However, it is quite
possible that, after conducting a generalizability analysis, one may want to design
a measurement procedure that differs from the G study. For example, if the
results of a G study show that some sources of error are small, then one may
select a measurement procedure that reduces the number of levels of that facet
(for example, number of items) or even ignore that facet (which can be critically
important in multifaceted designs – see next section). Alternatively, if the results
of a G study show that some sources of error in the design are very large, one
may increase the levels of that facet in order to maximize generalizability.
Generalizability Theory refers to the process by which facets are modified on
the basis of information obtained in a G study as decision (D) studies.

However, there appears to be much confusion in the literature concerning
the differences between a G study and a D study. Cronbach et al. (1972) indicate
that the distinction between a G study and a D study is just an affirmation that
certain studies are carried out while developing a measurement procedure and
then the procedure is put into use or action. In general, a D study can be
conceptualized as the point at which one looks back at the G study and examines
the measurement procedure in order to make recommendations for change. A
D study can be thought of as tackling the question, ‘What should be done
differently if you are going to rely on this measurement procedure for making
future decisions or drawing conclusions?’ In the case where no changes should
be made, the G study acts as the D study (that is, one uses the same sample of
items used in the initial study).

Although Generalizability Theory will generally get better as the number of
conditions in a facet is increased, this number can potentially become somewhat
unrealistic. More important is the question of the ‘exchange rate’ or ‘trade off’
between conditions of a facet within some cost considerations (Cronbach et al.
1972). Typically, in multifaceted studies there can be several D study designs that
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yield the same level of generalizability. For example, if one desires to develop a
measurement procedure with a relative generalizability coefficient of 0.90, there
might be two distinct D study designs from which to choose. Clearly, in such cases
one must consider resource constraints in order to choose the appropriate D study
design. The question then becomes how to maximize generalizability within a
prespecified set of limited resources. Of course, in a one-faceted person by item
(p × i) design, the question of satisfying resource constraints while maximizing
generalizability is simple. One chooses the greatest number of items without
violating the budget. When other facets are added to the design, obtaining a solu-
tion is much more complicated. Goldstein and Marcoulides (1991), Marcoulides
and Goldstein (1990, 1991) and Marcoulides (1993, 1995) developed various
procedures that can be used to determine the optimal number of conditions that
maximize generalizability under various constraints (see also the next section).

A two-facet crossed design

Generalizability Theory can also be used to examine the dependability of
measurements in a variety of multifaceted designs. For example, effectiveness
studies measuring quality of teaching by using external observers can make use
of Generalizability Theory in order to evaluate the quality of the data collected.
In such a case, a study might be conducted to determine the dependability of
measures of teacher ratings of performance by external observers. Such a design
might involve teachers (p) being observed by raters or judges (j) on their teaching
performance in different subjects areas (s). Such a design can be considered a
completely crossed p × j × s design in which each judge rates each teacher on
each subject (we note that in this study, subject area is considered a random
facet selected from a universe of possible subjects areas – Shavelson and Webb
1991). A similar approach is used in studies where questionnaires are administered
to teachers in order to evaluate the quality of teaching in different subjects
(Kyriakides and Creemers 2008).

Several sources of variability can contribute to error in this two-faceted study
of the dependability of the performance measures in which teachers (persons) are
the object of measurement. Using the ANOVA approach, variance components
for the three main effects in the design (persons, judges, subjects), the three two-
way interactions between these main effects and the three-way interaction
(confounded again with random error) are estimated. The total variance of the
observed score is equal to the sum of these variance components:

�2Xpjs = �2
p + �2

j + �2
s + �2

pj + �2
ps + �2

js + �2
pjs,e.

Table 10.2 provides the ANOVA source table and the estimated variance
components for the above example two-facet design. As can be seen in Table
10.2, the variance component for teachers indicates that there are differences
among the teachers’ performances (22.95 per cent variance). The magnitude of
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the variance component for the teacher by judge interaction (9.9 per cent)
suggests that judges differed in their grading of the teachers’ performance. The
teacher by subject interaction (45.8 per cent) indicates that the relative ranking
of each teacher differed substantially across the two subject areas. The relative
error variance associated with this measurement procedure is:

and the generalizability coefficient for a relative decision is:

The absolute error variance associated with this measurement procedure is:
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Table 10.2 Generalizability study results for teacher performance data

Source of variation df Sum of Mean Variance % variance 
squares square component explained

Teachers (p) 7 111.65 15.95 1.17 22.95

Judges (j) 2 4.88 2.44 0.02 0.29

Subject (s) 1 12.00 12.00 0.16 3.09
p × j 14 26.46 1.89 0.51 9.90
p × s 7 55.30 7.90 2.34 45.82
j × s 2 2.38 1.19 0.04 0.76
pjs,e 14 12.32 0.88 0.88 17.18

Total 100.00

Note: The estimated variance components for the above two-facet design are determined as follows:
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or simply:

With a generalizability coefficient for an absolute decision equal to:

As previously illustrated, a variety of D studies with different combinations
of judges and subject areas can be examined. For example, with nj = 3 and 
ns = 4 the generalizability coefficients for relative and absolute decisions are 
E�2

� = 0.59 and �2
� = 0.57. Whereas with nj = 3 and ns = 8, the generalizability

coefficients become to E�2
� = 0.70 and �2

� = 0.69. Since it is evident that the
subject areas facet is a major source of measurement error, increasing the number
of subject areas in the measurement procedure considerably increases the
generalizability coefficients. We note again that when selecting between various
D studies, one should always consider possible resource or other imposed
constraints on the measurement procedures before making final decisions about
a D study design (Marcoulides and Goldstein 1990). For example, if the total
available budget (B) for the two-faceted design is $5,000 and if the cost (c) for
each judge to observe a teacher in a subject area is $120, then the optimal
number of judges can be determined using the following equation:

Thus, D studies are very important when attempting to improve the dependability
of measurement procedures because they can provide values for both realistic
and optimum numbers of measurement conditions. For example, they can help
researchers within EER to identify the optimal number of external observations
for measuring quality of teaching (Campbell et al. 2004).

Extensions to multivariate measurement
designs

Behavioral measurements may also involve multiple scores in order to describe
an individual’s aptitude or skills. For example, the Revised Stanford-Binet
Intelligence Scale (Terman and Merrill 1973) uses 15 subtests to measure four
dimensions: short-term memory, verbal reasoning, quantitative reasoning and
abstract/visual reasoning. The most commonly used procedure to examine
measurements with multiple scores is to assess the dependability of the scores
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separately (that is, using a univariate generalizability analysis – Marcoulides
1994). In contrast, an analysis of such measurement procedures via a multivariate
analysis provides information about facets that contribute to covariance among
the multiple scores that cannot be obtained in a univariate analysis. This
information is essential for designing optimal decision studies that maximize the
dependability of measurement procedures.

The two-facet design examined in the previous section attempted to determine
the dependability of the measurement procedure using a univariate approach 
(that is, one in which judges and subject matter were treated as separate sources
of error variance – as facets). However, by treating the subject matter as a separate
source of error variance, no information was obtained on the sources of co -
variation (correlation) that might exist among the two examined conditions. 
Such information may be important for correctly determining the magnitude 
of sources of error influencing the measurement procedure. In other words, when
obtaining behavioural measurements, the covariance for the sampled conditions
and the unsystematic error might be a non-zero value. As it turns out, this
correlated error can influence the estimated variance components in a general -
izability analysis (Marcoulides 1987). One way to overcome the above-mentioned
problem is to conduct a multivariate G study and compare the results with those
obtained from the univariate results. If there are no differences, one can just proceed
with the information obtained from the univariate analysis.

The easiest way to explain the multivariate case is by analogy to the univariate
case. As illustrated in the previous section, the observed score for a person in the
p × j × s design was decomposed into the error sources corresponding to judges,
subject matter, and their interactions with each other and persons. In extending
the notion of multifaceted error variance from the univariate case to the multi -
variate, one must not treat subject matter as a facet contributing vari ation to the
design but as a vector of outcome scores (that is, as a vector with two dependent
variables). Thus, using v to symbolize the subject matter vector in the
measurement design provides:

vXpj = v� (mean for v)
+ (v�p – v�) (person effect)
+ (v�j – v�) (judge effect)
+ (vXpj – v�p – v�j – v�) (residual effect).

The total variance of the observed score �2
vXpj (which is analogous to �2Xpjs in

the univariate case) is:

�2
vXpj = �2

vp + �2
vj + �2

vpj,e .

As discussed in the previous section, univariate G theory focuses on the estimation
of variance components because their magnitude provides information about the
sources of error influencing a measurement design. In a multivariate analysis 
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the focus is on variance and covariance components. As such, a matrix of both
variances and covariances among observed scores is decomposed into matrices
of components of variance and covariance. And, just as the ANOVA can be used
to obtain estimates of variance components, multivariate analysis of variance
(MANOVA) provides estimates of variance and covariance components. It is
important to note that if the symmetric covariance values for �1Xpj – � 2Xpj =
0 (that is, the covariance between the two subject areas is zero), the diagonal
variance estimates for �2

1Xpj , �2
2Xpj would be equivalent to the observed score

variance in which subject matter is examined separately.
It is also easy to extend the notion of a generalizability coefficient to the

multivariate case (Joe and Woodward 1976; Marcoulides 1995; Woodward and
Joe 1973). For example, a generalizability coefficient for the above study could
be computed as:

where a = a weighting scheme for the dependent variables used in the multivariate
measurement design (that is, in the example design this would correspond to a
weight vector for the subject areas considered).

Unfortunately, the determination of appropriate weights to use for the
computation of a multivariate generalizability coefficient is not without contro-
versy. To date, a considerable amount of research has been conducted in an
attempt to settle the weighting issue, and various approaches have been proposed
in the literature. A detailed discussion of different approaches to the estimation of
weights is provided by Marcoulides (1994), Shavelson et al. (1989), Srinivasan 
and Shocker (1973) and Weichang (1990). The different approaches presented 
are based on either empirical or theoretical criteria and include: (a) weightings 
based on expert ratings, (b) weightings based on models examined through a CFA
(see Chapter 12), (c) equal or unit weights, (d) weightings proportional to
observed reliability estimates, (e) weightings proportional to an average correlation
with another sub-criteria, and (f) weightings based on an eigenvalue decom -
position criteria. In general, criticisms of the various approaches can be based on
three criteria (relevance, multidimensionality and measurability) and discussion
concerning which approach to use continues in the literature. Marcoulides (1994)
examined the effects of different weighting schemes on selecting the optimal
number of observations in multivariate-multifacted generelizability designs when
cost constraints are imposed and found that all weighting schemes produce similar
optimal values (see also Marcoulides and Goldstein 1991, 1992 for further
discussion concerning procedures to determine the optimal number of conditions
that maximize multivariate generalizability). Based on these results, Marcoulides
(1994) suggested that in practice, selecting a weighting scheme for conducting 
a multivariate analysis should be guided more by underlying theory than by
empirical criteria.

ρ2 =
′

′ +
′

a a

a a
a a

n

p

p
pj e

j

Σ

Σ
Σ ,

,

Using Generalizability Theory  231



Computer programs for generalizability analyses

The computational requirements involved in estimating variance components
for use in a Generalizability Theory analysis can be demanding, especially in
multifaceted designs. As a consequence, computer programs are generally used
to obtain the necessary estimates. Several tailored computer programs have been
developed for conducting univariate and multivariate generalizability analyses
including GENOVA, urGENOVA, mGENOVA (Brennan 1983, 2001), EduG
(Cardinet et al. 2009; the program is also available with manuals from www.irdp.
ch/edumetrie/englishprogram.htm). These programs are relatively easy to use,
and they provide excellent procedures for handling most of the computational
complexities of Generalizability Theory. Other general purpose programs that
can be used to estimate variance components for a generalizability analysis include
the REML program (Robinson 1987), the SAS-PROC VARCOMP and SAS-
PROC MIXED procedures (SAS Institute 1994), the SPSS variance components
procedure, and even general-purpose SEM programs such as Amos, LISREL,
EQS and Mplus (Marcoulides 1996).

As an illustration, Appendix A contains examples of GENOVA program setups
for the above considered one-facet crossed design using raw data, mean squares
and variance components as input. One nice feature of the GENOVA program
is that any number of D study designs can also be specified for estimation. For
example, lines 21–27 specify four crossed D studies with different choices (1,
5, 10 and 20) for the number of conditions of the item facet. Appendix B contains
an example SAS-PROC VARCOMP program setup and sample output for the
same one-facet crossed design. As can be seen in Appendix B, the program
provides the estimated variance components, but the user must compute the
relative and absolute error variances and generalizability coefficients separately.
Appendix C contains an example LISREL program code for examining the two-
facet model illustrated in Figure 10.1, which is presented in the next section.

Recent extensions to Generalizability Theory

SEM applications

Reliability estimation using SEM has received considerable attention in the
literature. Work by Bollen (1989), Gessaroli and Folske (2002), Hagtvet (1997,
1998), Hancock and Mueller (2001), Höft (1996), Marcoulides (1996, 2000),
Miller (1995), Komaroff (1997), Raykov (1997, 2001) and Raykov and
Marcoulides (2006a,b) has contributed to popularizing the SEM approach for
point and interval reliability estimation within both the Classical Test Theory
and Generalizability Theory frameworks. Additionally, the relationship between
covariance structure analysis and the random effects ANOVA approach for
estimating variance components was also pointed out much earlier by a number
of authors (Bock 1966; Bock and Bargmann 1966; Joreskog 1971; Linn and
Werts 1977; Wiley et al. 1973), although the original idea for analysing measure -
ment designs in this manner is probably due to Burt (1947).
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The SEM approach to reliability estimation within Classical Test Theory
primarily utilizes the model of congeneric measures (items). If Y1, Y2, . . . , Yk

(k > 1) are congeneric measures, the following model can be used: Yi = �i� + ei,
where �i is a scale parameter for the ith test, � is the common true score (that is,
� = T1, the true score of Y1), and ei are measurement errors that are assumed to
be uncorrelated. Setting the variance of the factor as Var(�) = 1, the reliability
coefficient of the scale score Y = Y1 + Y2 + . . . + Yk, can be determined as follows
(which is equal to the ratio of true to observed variance in Y):

where �i = Var(ei) (i = 1, . . . , k). Raykov and Shrout (2002) subsequently
extended the above approach to the case of non-homogeneous scales (that is,
when the set of considered components exhibits variability that cannot be
explained by a single underlying latent dimension), thereby enabling interval
estimation of their reliability as a byproduct (see also Gessaroli and Folske 2002).
Specifically, if Y1, Y2, . . . , Yk measure the factors �1, �2, . . . , �m, then reliability
equals:

where �ij is the loading of the ith component on the jth factor (i = 1, . . . , k; 
j = 1, . . . , m).

The applicability of the above SEM approach for purposes of Generalizability
Theory analyses was originally considered in earlier discussions by Marcoulides
(1996 and references therein) and extended more recently by Raykov and
Marcoulides (2006b). For example, in the context of the two-facet design
illustrated previously, a CFA model can be used to estimate all the variance
components that involve persons (that is, �2

p, �2
pr, �2

ps and �2
prs,e). Marcoulides

(2000) also illustrated that instead of analysing the relations among variables,
for which only variance components for persons and any interactions with persons
can be estimated, analysing the matrix of correlations among persons leads to
the variance components for the other facets. As such, all potential sources of
measurement error in a design can be estimated.

Using the approach proposed by Raykov and Marcoulides (2006b), this
application is graphically represented in Figure 10.1 for the case of nr = 4 raters
assessing teachers on two occasions on two subject areas (no = 2). The figure
follows widely adopted notation for displaying structural equation models (see
Chapter 12).
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The essential part of the approach involves an evaluation of the observed
score variance, Var(Y). As illustrated in Figure 10.1, this is accomplished through
the introduction of a dummy variable �* = Y (that is, the sum of all k = nrno

observed variables Y1, Y2, . . . , Yk) in the following manner:

(no times, once for each occasion)

whereby each of the last no rows represents the sum of observed variables
pertaining to the two assessment occasions. Thus, with the assumption of equal
variances for the unrelated latent variables (Marcoulides 1996, 2000), the
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  Y1   Y2   Y3   Y4   Y5   Y6   Y7   Y8

1 2 3 4 5 6 7 8

10 11

12 13 14 15

9η η

η η η η η η η η

ηη

ηηηη

Figure 10.1 A Structural Equation Model for estimating the relative generalizability
coefficient in a two facet crossed design

Note: All one-way paths fixed at 1, and all residual variances set equal (for simplicity of graphical
notation, symbols of residual terms are omitted); Var(�9) = �p

2, Var(�10) = Var(�11) = ��
2, and Var(�12)

= Var(�13) = Var(�14) = Var(�15) = �r
2 (Marcoulides 1996); �i = Yi (i = 1, . . . , 8), �* = Y (with the

described vector � corresponding to (�9, �10, . . . , �15, �16 = �*).



observed score variance is obtained by taking variance from both sides in the
above equation and leads to:

Var(Y) = Var(�*) = n2
rn2

o�
2

p + n2
rno�

2
pr + n2

onr�
2

po + nrno�
2

pro,e.

Because in Generalizability Theory variability of the two facets constitutes
error variance when making generalizations over the object of measurement, it
follows that TY is that part of the sum score Y that has only to do with persons:

TY = nr�1 + nr�1 + . . . + nr�1 (no times, once for each assessment 
= nrno�1. occasion)

Hence the variance of the score is determined to be:

Var(TY) = n2
rn2

o�
2

p.

Thus, the reliability of the observed score Y is:

Applying the above equations to data from a two-facet crossed design, one can
obtain an estimate of the relative generalizability coefficient. This estimate simply
equals the squared correlation between (a) the used dummy variable that is set
equal to the sum of all evaluations of the object of measurement under all
combinations of the levels of the two facets, and (b) the corresponding latent
variable that is loading on all the manifest variables. We note that since an
application of the SEM approach yields the same estimates as would be obtained
with ANOVA (or even alternative estimation approaches), the results already
displayed in Table 10.2 are not repeated.

Generalizability Theory as a latent trait theory
A number of researchers have provided comparisons between Generalizability
Theory and IRT approaches (particularly the Rasch model) and illustrated how
both approaches can be used to provide information with respect to measurement
designs, especially those that involve judges using defined rating scales (Bachman
et al. 1993; Bachman et al. 1995; Harris et al. 2000; Lynch and McNamara
1998; Macmillan 2000; Marcoulides 1999; Marcoulides and Kyriakides 2002;
Stahl and Lunz 1993; Stahl 1994). Although estimating a person’s ability level
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is considered by many researchers to be fundamentally different in the two
comparison theories (Embretson and Hershberger 1999), Marcoulides (1997,
1999, 2000) has argued that the theories can be conceptualized as merely
alternative representations of similar information. Marcoulides (1999) also
introduced an extension to the traditional Generalizability Theory model (called
the MD model – see Marcoulides and Drezner 1993, 1995, 1997, 2000) that
can be used to estimate latent traits such as examinee ability estimates, rater
severity and item difficulties, to name a few. The above extension to General-
izability Theory can be considered a special type of IRT model capable of
estimating all latent traits of interest. Somewhat similar to IRT, where detecting
a person’s trait level is considered to be analogous to the clinical inference
process, the Marcoulides and Drezner (MD) model infers trait levels on the
basis of the presented behaviours and places each individual on a trait continuum.

The MD model is based on the assumption that observed points (that is,
examinees, judges, items or any other set of observations that define a facet of
interest) are located in an n-dimensional space and that weights (wij) can be
calculated that indicate the relation between any pair of points in this n-
dimensional space. These weights constitute a measure of the similarity of any
pair of examinees in terms of ability level, any pair of judges in terms of severity
estimates or any pair of items in terms of difficulty (Marcoulides and Drezner
1993). For example, in the previously considered two-faceted measurement
design with teachers, the MD model provides information concerning teacher
ability and rater severity estimates. We note that the MD model can also be
extended to include other latent traits of interest depending on the facets included
in the original measurement study. For example, item difficulty estimates could
be calculated if teachers had been rated using some set of items. An effectiveness
study that made use of this approach and demonstrated its strengths, especially
for measuring teachers’ skills, is Kyriakides et al. (2009). Marcoulides and Drezner
(1997) referred to the ability measure for each examinee (Se) as the Examinee
Index (the ability estimate is similar to the ability estimate used in IRT models,
which is generally represented as �), and the severity estimate for each judge
(Sj) as the Judges Index. Because the MD model independently calibrates the
examinees and judges so that all observations are positioned on the same scale,
the scales range from +1 to –1. Thus, negative values of the Examinee Index
indicate relatively less-able examinees and positive values relatively more-able
examinees. Similarly, negative values of the Judges Index indicate relatively
lenient judges and positive values indicate relatively severe judges.

Mathematically the MD model posits that in any measurement design with
a distribution of random observations X = (xijk . . . n) (i = 1, . . . , m; j = 1, . . . ,
p; k = 1, . . . , q; n = 1, . . . , r) (for example, representing m people taking a test
with p items), n points (for example, an examinee’s score) are located in a
dimensional space and weights (wij) between points that need to be determined
for i, j = 1, . . . , n. The weights express the importance of the proximity between
points in space (for example, the similarity in examinee ability level estimates or
item difficulty). One can find the points by minimizing the objective function:
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where X is a vector of values for the points (defined according to the latent trait
of interest – either examinee ability, item difficulty, and so on), dij is the Euclidean
distance between points i and j, and weights (with wii = 0 for i = 1, . . . , n and
wij = wji) are determined by using:

where D is the n-dimensional distance between points i and j, and the power
p is a parameter that maximizes the correlation coefficient r between the vectors
dij and Dij for i > j (for further details, see Marcoulides and Drezner 1993,
1995, 1997). The actual values of X (that is, the observed values of the latent 
trait of interest) are determined by calculating the eigenvectors of the second
smallest eigenvalues of a matrix S (whose elements are defined as sij = 	j wij and
sij = –wij). The eigenvectors associated with the eigenvalues of S also provide
coordinates of a diagnostic scatter plot (either one-dimensional or two-
dimensional) for examining the various observations and conditions within a
facet in any measurement design. Examination of the diagnostic scatter plot can
assist with detecting unusual examinee performances and/or unusual patterns
of judges’ ratings. All the eigenvalues are non-negative (for non-negative weights)
with the smallest one being zero, with an associated eigenvector consisting of
ones. It is important to note that the problem is invariant under the trans-
formation wij = wij + c for any given constant c. As such, even if there are any
negative points, the problem can be solved by adding a positive constant c so
that all points are non-negative.

As example illustrations that highlight the diagnostic capabilities of the MD
method and exemplify the discrepancies between the MD and Rasch approaches,
we consider three different measurement situations (Marcoulides and Kyriakides
2002). The first two examples are used to illustrate the difficulties that the Rasch
model has with ordering persons having the same raw score but who perform/
answer different items correctly. The third example illustrates the difficulty of
the Rasch model with providing estimates of perfect performance scores or
completely failing performances. The last example also illustrates the model’s
difficulty distinguishing a group of individuals when each one receives a different
score from any other member of the group and thereby there is a perfect
discrimination in the raw scores of the examinees.

For the first example, let us assume that the data presented in Table 10.3 are
observed. Such data will serve to illustrate the difficulty the Rasch model has
with ordering persons that have the same raw score (Wright 1998). A fictitious
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high jumping event in which four athletes participated would exemplify such a
situation – a value of zero (0) implies the high jumper skipped the height and
a value of one (1) implies the height was cleared. Such a situation would also
be similar to examining data in which a group of students performed tasks
exhibiting increasing levels of difficulty. In the fictitious example, all athletes
have jumped two heights (performed two tasks) and, according to the Rasch
model, have the same estimated ability trait level score of –0.96 with a relatively
high standard error value (that is, 0.64). The data were analysed by using the
computer program MULTILOG (Thissen 1991). Thus, regardless of how an
individual gets a particular score, any other similar individual score will always
yield the same trait level estimate (Embretson and Reise 2000). Nevertheless,
it is obvious that Person 1 and Person 2 have jumped the highest and 
the MD model provides the following ability estimates: person 1 = 0.5; person
2 = 0.5; person 3 = –0.5; person 4 = –0.5. The MD model also provides the
following task estimates – indicating that height 6 is the hardest: height 1 =
–0.5658; height 2 = –0.2999; height 3 = –0.2999; height 4 = 0.2999; height
5 = 0.2999; height 6 = 0.5658. In this example, it is clear that the MD model
is able to differentiate the fact that Person 1 and Person 2 were able to jump
higher, and therefore gives them a higher ability estimate in comparison to the
other persons.
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Table 10.3 Data for first hypothetical high jumping example

HEIGHT 1 2 3 4 5 6

Person
1 0 0 0 0 1 1
2 0 0 0 1 0 1
3 1 0 1 0 0 0
4 0 1 1 0 0 0

Table 10.4 Data for second hypothetical high jumping example

ITEM 1 2 3 4 5 6 7 8 9 10

Person
1 1 1 1 0 0 0 0 0 0 0
2 0 1 1 1 0 0 0 0 0 0
3 0 0 1 1 1 0 0 0 0 0
4 0 0 0 1 1 1 0 0 0 0
5 0 0 0 0 1 1 1 0 0 0
6 0 0 0 0 0 1 1 1 0 0
7 0 0 0 0 0 0 1 1 1 0
8 0 0 0 0 0 0 0 1 1 1



The data presented in Table 10.4 provide another example in which a group
of athletes all jump exactly three heights (that is, obtain the same raw score).
In this example, however, the score patterns are ordered according to their
Guttman scalability. As such, the first athlete is able to jump the three lowest
heights, whereas the last athlete is able to jump the three highest heights. Once
again, because all athletes have jumped the same number of heights, when the
data are analysed using MULTILOG, the Rasch model provides the same
estimated ability trait level score of –0.92 (Se = 0.55) for each athlete. However,
it is obvious that Person 8 has jumped the highest and should not receive the
same ability estimate as the other athletes. In contrast, the MD model is again
able to differentiate between the different abilities and provides the following
ability estimates: Person 1 = –0.6156; Person 2 = –0.3026; Person 3 = –0.1629;
Person 4 = –0.0536; Person 5 = 0.0536; Person 6 = 0.1629; Person 7 = 0.3026;
Person 8 = 0.6156.

The data presented in Table 10.5 provide another example in which a group
of athletes are asked to jump ten heights. As can be seen in Table 10.5, Person
1 is unable to jump a single height, whereas Person 11 manages to jump all ten
heights. An analysis of the data based upon the Rasch model provides the
following results: Person 1 = cannot be computed; Person 2 = –2.20; Person 3
= –1.47; Person 4 = –0.92; Person 5 = –0.45; Person 6 = 0.0000; Person 7 =
0.45; Person 8 = 0.92; Person 9 = 1.47; Person 10 = 2.20; and Person 11 =
cannot be computed. In contrast, the MD model provides the following results:
Person 1 = –0.6387; Person 2 = –0.2513; Person 3 = –0.1432; Person 4 =
–0.0830; Person 5 = –0.0387; Person 6 = 0.0000; Person 7 = 0.0387; Person
8 = 0.0830; Person 9 = 0.1432; Person 10 = 0.2513; Person 11 = 0.6387. Such
a data set serves to illustrate the difficulty of the Rasch model in comparison to
the MD model for providing estimates of perfect performance scores or
completely failing performances (or scores). Indeed, as indicated by Bond and
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Table 10.5 Data for third hypothetical high jumping example

ITEM 1 2 3 4 5 6 7 8 9 10

Person
1 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 1 1 0 0 0 0 0 0 0
5 1 1 1 1 0 0 0 0 0 0
6 1 1 1 1 1 0 0 0 0 0
7 1 1 1 1 1 1 0 0 0 0
8 1 1 1 1 1 1 1 0 0 0
9 1 1 1 1 1 1 1 1 0 0
10 1 1 1 1 1 1 1 1 1 0
11 1 1 1 1 1 1 1 1 1 1



Fox (2001), the Rasch model cannot provide estimates of perfectly good or
completely failing scores. Although some researchers (Endler 1998; Wright
1998) have provided guidelines for the approximation of ability measures under
such circumstances, others have suggested that such scores should be removed
from the data set (Masters and Keeves 1999). As such, there does not appear
to be complete agreement as to how to handle these types of situations. For
example, Wright (1998) has provided some guidelines for the extrapolation of
approx imate measures of perfect scores, with a preference toward ‘extreme score
adjustment’ – because it has proved robust and flexible for small samples with
missing data. Endler (1998) also proposed the addition of 1 logit score to the
highest/lowest ability estimate in order to deal with the matter. Based upon the
above examples, it should be clear that the diagnostic capabilities of the MD
method can be used alongside the traditional Generalizability Theory approach
to obtain a wealth of information about the psychometric properties of measure-
ment procedures.

Concluding comments: application of
Generalizability Theory to EER

In this chapter, an overview of Generalizability Theory has been provided and
we have shown how this theory can be used to design, assess and improve the
dependability of measurement procedures. Obviously, the issues raised in this
chapter can help researchers in any field to improve the quality of their studies.
However, within EER, there are specific reasons to make use of Generalizability
Theory. First, the measurement of the functioning of factors operating at teacher
and school level is based on using different sources of data provided by different
groups of participants in education. For example, student questionnaires or
external observations are used to collect data on quality of teaching. Similarly,
the functioning of school factors is usually measured by looking at the perceptions
of teachers. In any of these cases, the object of measurement has to be identified.
By conducting a generalizability study, researchers can identify the extent to
which the data are generalizable to the level of teacher or school respectively.
To address this need, sometimes more complicated models involving additional
facets have to be developed, especially in using ratings of secondary students (or
even university students) to measure the skills of teachers who offer lessons to
different age groups of students. Second, a D study can help researchers to take
decisions about the optimal design of their studies in relation to its purpose.
For example, it is a common practice to use external observers in order to evaluate
the skills of teachers. Given the practical difficulties (including the cost) of
conducting external observations, a D study can be conducted in order to help
researchers within EER to identify the optimal number of observations that have
to be conducted in order to measure the skills of teachers and/or the number
of external observers that could be involved in collecting data. Furthermore,
Generalizability Theory can be found useful for conducting mixed methods
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studies. In one of the examples given in Chapter 7 where both qualitative and
quantitative methods were used to develop an instrument measuring teacher
effectiveness across countries, the use of Generalizability Theory was essential.
Specifically, at each stage of the ISTOF study, a generalizability analysis was
conducted to identify the extent to which data generated by different participants
(who were coming from different countries and had different professional
responsibilities) could be used for establishing consensus between and within
countries about the importance of specific components of effective teaching and
specific items of an observation instrument (Teddlie et al. 2006). Finally, within
EER there are contrasting views on the possibilities of developing generic or
differential models to explain educational effectiveness (Kyriakides and Creemers
2009; Campbell et al. 2003; and see Chapters 3 and 7). Generalizability Theory
can be found useful in identifying whether the effects of specific factors operating
at teacher and school levels indicate that the factors can be treated as generic.
Answers to this type of question can also be given by conducting quantitative
synthesis of effectiveness studies (see Chapter 13). Therefore, by making use of
Generalizability Theory, a much broader spectrum of research questions within
the field of EER can be investigated.
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Introduction

In this chapter we present a brief introduction to the theory behind multilevel
modelling. We illustrate the main points in our discussion with examples from
our own and other research experience. These include examples of multilevel
models with random slopes, growth curve models, multivariate models and cross-
classified models. We do, however, limit our discussion to multilevel analysis
with continuously distributed outcome variables. Readers interested in multilevel
analysis with discrete (dichotomous and ordinal) rather than continuous outcome
variables are referred to more extensive and advanced publications on multilevel
analysis (Bryk and Raudenbush 1992; Goldstein 1995; Hox 2002; Snijders and
Bosker 1999). Moreover, some effectiveness studies have made use of this type
of multilevel model, so such further reading might be of particular use to readers
of this volume (Kyriakides et al. 2009; Pustjens et al. 2004)

Hierarchically structured data sets

Research in the field of educational effectiveness often involves the analysis of
data sets that are hierarchically structured. In these cases, two or more levels
can be distinguished, with the units at the lower levels nested within the higher
level units. The most well-known example of this is a data set of students nested
within classrooms within schools. The hierarchical structure may be extended
even further, for example, if one takes into account the nesting of schools within
geographical units (such as local communities, regions or nations).

It is not necessarily the individual level that constitutes the lowest level in 
the hierarchy. In many applications of multilevel analysis, multiple measure-
ments per individual on the outcome variable(s) represent the lowest level. 
These may be repeated observations over time on the same variable (so can be used
in longitudinal analyses, see Chapter 5), but they may also relate to scores on
different measures (for example, reading and mathematics scores) for the same
individual. In these cases, individuals represent the second level units, which may
in turn be nested within higher level units. If the observations per individual relate
to the same variable but are measured at different points in time, multilevel
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analysis can be employed to model individual growth patterns. The main advantage
of multilevel analysis for this purpose is its flexibility and capability to deal with
unbalanced data. Multilevel software does not require the same number of
measurements for each individual and can easily handle data with incomplete
records on the outcome measures. Nor does it require that all individuals are
measured at the same points in time. In addition to the analysis of longitudinal
data, the multilevel approach may also be useful for analysis of data with two or
more distinct outcome measures per individual. This approach is usually referred
to as multivariate multilevel modelling. It is less frequently applied as it is more
complicated than conducting separate analyses for each outcome variable. Only
with respect to specific research questions does the multivariate approach yield a
clear advantage over separate analyses per dependent variable. For more details see
the relevant following section on multivariate multilevel models.

Multilevel analysis is highly useful when the analysis relates to data that 
derive from multistage sampling. From a data collection perspective, it is often
conven ient to make use of the fact that individuals are clustered within higher level
units. A two-stage sampling design with schools as the ‘primary sampling units’
in particular may be quite efficient. This means that in the first stage, a random
sample of schools is drawn and in the second stage, a sample of students within
the schools may then be selected, but more frequently a sample of intact grades
or classes. In other cases of multistage sampling, geographic units (for example,
regions or municipalities) may be the primary sampling units. Application of 
such multi stage sampling methods has its consequences for computing appro priate
confi dence intervals and performing statistical significance tests. The basic formulas
for computing the standard errors used for statistical inference that are discussed
in most statistical textbooks assume that the data were obtained through a 
simple random sampling procedure. In practice, multistage sampling is applied
much more frequently, especially in educational studies.

If a researcher ignores the fact that the data analysed were collected through
multistage sample, she or he is bound to overestimate the statistical significance
of the findings. In this case the interdependence of observations within primary
sampling units (such as students within schools) is not taken into account. A
simple random sampling design implies that the selection of one unit does 
not affect the chance of another unit to be selected, and this clearly does not
apply for multistage sampling. Selection of certain primary sampling units (for
example, schools) increases the chance of being selected for the lower level units
(for example, students) nested within these primary units.

The most widely used statistical software programs by educational effectiveness
researchers (SPSS, SAS, Stata) provide the possibility to obtain appropriately
estimated standard errors by taking into account the sampling scheme. One might
argue that these facilities solve the problems presented by multistage sampling.
However, multilevel analysis is based on the notion that hierarchical structures
in a data set present an interesting phenomenon that deserves special attention
in itself. The various levels present distinct sources of variation. In educational
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research, the contributions of these levels (such as school, classroom and student)
to the variance in the outcome measures are of particular interest. The percentage
of variance in student achievement situated at the school level is usually referred
to as the ‘school effect’. Multilevel analysis often starts with a so-called ‘zero
model’, which includes no explanatory variables and only involves a partitioning
of the variance in the outcome measure into two or more components (for
example, the student and the school level). For students nested within schools,
this model merely conveys that an individual score can be considered to be the
sum of the average score and the school and student specific deviations. This is
expressed formally in the equation below:

Yij = �00 + u0j + rij, (1)

where:

Yij = score on the outcome measure for student i in school j

�00 = average score across schools and students (‘Grand Mean’)

u0j = deviation from Grand Mean for school j

rij = deviation from school average for student i in school j.

The variances of the school-specific and student-specific deviations (u0j and
rij) are of particular interest. Let us denote the variance of u0j as �2

00 and the
variance of rij as �2. In EER a question of special interest often relates to the
percentage of school-level variance. This may also be expressed in terms of an
intraclass correlation coefficient (ICC or �), which is defined as follows:

(2)

The variances computed for each level through the fitting of a zero model
may also provide a basis for estimating the percentage of variance explained per
level. In subsequent stages of the analysis, explanatory variables are added to
the model and by comparing the variances per level of these models to the
variance components in the zero model one can assess the variance explained
for each separate level. The next equation presents an example of a multilevel
model that includes an explanatory variable:

Yij = �00 + �10Xij + u0j + rij. (3)

The model described through equation (3) includes just one explanatory
variable (X), which is measured at the student level. This is revealed by the
double subscripts (i for students and j for schools). Scores on a school level
variable would be denoted by only a single subscript. In practice the analysis
usually involves more complex models with multiple variables measured at both
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levels. Equation (3) is highly similar to a regression equation and one may
conceive of multilevel analysis as an extension of regression analysis. The Grand
Mean (�00) is analogous to the intercept in ordinary least squares (OLS)
regression. It denotes the expected score on the dependent variable (Y) if the
scores on the independent variables are equal to zero. In order to facilitate the
interpretation of the intercept, the independent variables may be centred on the
mean score. Thus, the intercept expresses the expected score on the dependent
variable for individuals with an average score on all explanatory variables. In
most cases a zero score on the independent variable(s) may represent a non-
existing or highly exceptional situation, as most explanatory variables (for
example, pre-test score or parents’ education) do not take negative values.

The main extra feature of multilevel analysis in comparison to the most
commonly used OLS regression is the identification of distinct levels of variance.
It should be noted that lower level variables may explain variance at higher levels,
but not the other way around. Student background characteristics may account
for variation between schools with regard to student achievement, but school
characteristics can only account for variation between schools. Sometimes one
may even be confronted with the paradoxical finding that adding new explanatory
variables to the model leads to more variance at the higher level(s). This would
seem to indicate a negative percentage of variance explained. An example would
be that including student achievement at school entry in the model produces
an increase in the estimated school-level variance. This would imply that, if
students of similar entry levels are considered, the differences between schools
are larger than they appear without taking student background into account.
This could be the case if the variation between schools with regard to the
progress of the students is larger than it is for the post-test scores. Note that
such negative percentages of explained variance only relate to higher level units
and that the total amount of variance explained is never negative.

The way multilevel analysis deals with the various sources of variance (such
as the school level) can be considered equivalent to controlling for the member-
ship of a higher level unit (that is, being a student at a particular school). In
ordinary regression analysis this might be dealt with through the introduction
of numerous dummy variables into the statistical model, each of which denotes
membership of a particular school. Dealing with the school level in this way
would be rather inefficient, as in most cases the number of schools would be a
few dozens at least. For the interpretation of the estimated effects it is important
to realize that in multilevel analysis these estimates relate to effects when
controlling for membership of higher level units. As a result, the effects of
explanatory variables in multilevel analysis may deviate from outcomes obtained
through a more straightforward analysis. On the next pages we will present an
example of the gender effect on mathematics achievement for Dutch 15-year-
olds in multilevel analysis that clearly deviates from a straightforward comparison
of mean scores for male and female students. In this case, multilevel analysis
shows a substantial male advantage, whereas the straightforward comparison only
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shows a minor and statistically insignificant difference between boys and girls.
The distribution of male and female students across schools turns out to be an
important factor. The multilevel results point to a male advantage within schools.
Which outcome should be considered most relevant mainly depends on the
specific research questions that the analysis is supposed to answer.

Another important feature of multilevel analysis is the possibility of modelling
random slopes in addition to random intercepts. In the models described so far
the intercept (Grand Mean) is allowed to vary randomly across higher level units,
which allows for the estimation of variance components. In the case of random
slopes, the effect of an explanatory variable is decomposed into a fixed effect
and a random effect as well. The fixed effect denotes the average effect, whereas
the random effect indicates to what extent the effect varies between higher level
units. A relevant topic in educational research might be how much the effects
of student background characteristics vary between schools. Random effects
models are also highly appropriate when growth curves are the main focus 
of analysis (see Chapter 12). In these cases the lowest level relates to repeated
measurements, which are typically modelled as a function of time. Usually the
growth patterns will vary across individuals and possibly also across higher level
units. The basic random effects model is presented in the equation below:

Yij = �00 + �10Xij + u0j + u1jXij + ri. (4)

In equation (4) the coefficient �10 represents the average effect of the explanatory
variable (X) across higher level units. The new addition to the model in
comparison to equation (3) is presented by u1j, which expresses that the effect
of X varies across higher level units. If the model relates to students nested
within schools, u1j denotes the school specific deviation of the effect. In the case
of a random slopes model the higher level units can be characterized not only
by the unit specific deviations of the intercept but also by deviations from the
average effect of the explanatory variable. The variance of the latter deviation
(u1j) can be denoted as �2

11. One should also take into account that u0j and u1j

may covary to some extent. This covariance can be denoted as �01. A positive
covariance implies that positive deviations from �00 tend to coincide with positive
deviations from �10 and negative deviations with negative ones. If we are dealing
with students and schools, such a positive covariance indicates that the effect of
the explanatory variable is particularly strong in schools with a high score on
the outcome variable. For the sake of interpretation it may be helpful to express
the covariances as correlations. For more details we refer to the section on
random slopes models.

With regard to interpretation it should also be emphasized that in random
slopes models the estimated variances and covariances relate to those cases with
a zero score on the explanatory variables. Centring the independent variables
on the mean score is therefore often very helpful. Most importantly, the zero
scores on the explanatory variables should have a well-interpretable meaning (it
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is to be preferred that they relate to a relevant reference situation). In growth
models, it may be suitable that the zero score corresponds to the first (or last)
measurement.

Multilevel analysis was initially developed to deal with data sets that are
structured in a way that is perfectly hierarchical. This means that membership
of a certain unit determines membership of a corresponding higher level unit.
For example, if a student belongs to a certain class this also implies that he
attends a certain school. This is the essence of lower level units being nested
within higher level units. In some situations, however, the nesting is not perfectly
hierarchical. If one wants to include the nesting of schools within geographical
units (such as neighbourhoods) in the analysis, it should be taken into account
that some schools attract students from various neighbourhoods, while at the
same time students from the same neighbourhood may attend different schools.
In those cases the nesting of schools within geographical units is not perfectly
hierarchical. Multilevel analysis can deal with such cross-classifications, although
the models are technically and computationally more demanding than perfectly
hierarchical models. Analysis that involves cross-classified multilevel models
therefore requires powerful statistical software (for example, MLwiN).

In the next sections we provide real-life examples of the types of multilevel
analysis described above. We start with an analysis that relates to gender effects
on mathematics achievement. This example illustrates that the effects of explan -
atory variables estimated in multilevel analysis express their effects when con -
trol ling for membership of higher level units. The second example involves a
random slopes model and the third relates to an analysis of individual growth
curves. In this (third) case the repeated measurements present the lowest level
and the individuals are higher level units. The same applies to the next (fourth)
example, which presents a multivariate multilevel model. In this case the lowest
level relates to distinct outcome measures (language and mathematics) per
individual. The fifth example illustrates that the multivariate multilevel model 
is also highly useful for conducting meta-analysis. Our final examples relate to
cross-classified multilevel models.

Example 1: gender effects on mathematics

In this section we illustrate that multilevel analysis may produce estimated effects
that differ substantially from an analysis that does not take the hierarchical
structure of the data set into account. The analyses focus on the effect of gender
on mathematics scores for 15-year-olds in the Netherlands. The data derive from
the PISA 2003 survey. PISA, which started in 2000, is a three-yearly international
comparative study into student performance on reading, mathematics and science
(OECD 2004). The Dutch data set contains 3,992 students in 154 schools.
The results of a multilevel analysis with gender as the explanatory variable and
the score on the mathematics test as the dependent variable are reported in
Table 11.1. The computations were conducted with the SPSS software. Gender
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is by definition a dichotomous variable. In the analyses presented, female students
get a zero score on the gender variable and the score for males is 1. Therefore,
the intercept denotes the average mathematics score for girls, while the effect
of gender reflects the male (dis)advantage.

A remarkable result is the relatively high amount of variance at the school level.
This even exceeds the student-level variable. Expressed as an intraclass correlation
coefficient, this yields a value equal to 0.64, which is much higher than what is
usually found in EER. Table 11.1 further shows that multilevel analysis produces
a highly significant male advantage of more than 15 points. When the data are
analysed with OLS regression analysis, as reported in Table 11.2, the gender effect
is less than five points and by no means statistically significant, if the standard errors
are computed taking the sample design into account. The regression coefficient is
exactly equal to the difference in achievement scores between male and female
students and the regression intercept equals the mean score for girls. In this case,
regression analysis and multilevel analysis yield clearly different results. This means
that although the overall difference between boys and girls with regard to
mathematics achievement is very small, within schools girls are outperformed by their
male counterparts to a considerable extent. Some more specific knowledge with
regard to the Dutch system of secondary education is required to explain these
somewhat surprising and confusing findings.

252 Different methodological orientations

Table 11.1 Gender effect on mathematics in multilevel analysis

Fixed effects Effect Standard error Significance

Intercept 531.49 6.21 0.000
Male advantage 15.28 1.86 0.000

Random effects
School level variance 5,674.54 664.01 0.000
Student level variance 3,166.01 72.34 0.000

Table 11.2 Gender effect on mathematics in OLS regression analysis

Effect Standard error Significance

Model 1:
Gender effect only
Intercept 540.11 6.29 0.000
Male advantage 4.79 3.93 0.225

Model 2:
Gender and school type
Intercept 482.20 4.93 0.000
Male advantage 14.59 2.51 0.000
Senior secondary and 129.65 5.53 0.000
pre university track



After primary education (at the age of twelve) Dutch students are selected
for various tracks on the basis of their (presumed) academic aptitudes. Most
secondary schools provide several tracks, but usually not the entire range.
Important is the distinction between schools providing the most advanced tracks,
namely senior secondary and pre-university education vs. schools providing pre-
vocational tracks. It is also important to note that boys are overrepresented in
the less advanced, pre-vocational tracks, where they make up 55 per cent of the
student population, whereas girls make up 55 per cent of the population in the
more advanced tracks. The bottom part of Table 11.2 shows the outcomes of
a regression analysis that takes into account whether a student is in one of the
advanced tracks. The outcomes show that the difference in achievement between
these two groups of students is enormous (nearly 130 points). It is also important
to note that including this variable in the regression model produces a gender
effect that is similar to the effect obtained with multilevel analysis.

The present example illustrates that regression analysis and multilevel analysis
may produce clearly different outcomes. In this case it is caused by the unequal
gender distribution across pre-vocational and more advanced schools. However,
in other instances it will not always be possible to identify the underlying causes.
In such cases multilevel analysis can provide highly valuable findings, because it
takes into account that the nesting of lower level units within higher level units
may produce distinct sources of variation in the outcome variables. However, it
is also important to interpret multilevel findings correctly. In the present example
it would be a mistake to interpret the gender effect estimated with multilevel
analysis straightforwardly as an indication of the difference in mathematics
achievement between Dutch male and female students. The multilevel findings
relate to the gender differences within schools.

Example 2: random slopes; test scores and
secondary school recommendations

This example illustrates how a random slopes model can be applied to assess
whether the effect of a student-level variable varies across schools. For the
analyses we make use of the Dutch PRIMA data that were collected in the second
half of the school year 2002–03. The findings reported in this section relate to
students in the final grade of Dutch primary education. In the next section,
which focuses on growth curve analysis, we report findings from analyses on
longitudinal PRIMA data. The data derive from a sample of 7,887 Dutch
students in the final grade of 354 primary schools.

As mentioned in the previous section, students in Dutch secondary education
are assigned to distinct tracks. At the end of primary school each student gets
a recommendation for a specific subsequent track from his/her primary school.
This recommendation is the outcome variable of the analysis in the present
example. This variable can take on 15 different values. There are eight different
tracks and often a student gets the recommendation that either of two adjacent
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tracks may be suitable, which produces seven additional categories. Pre-university
education is the most advanced track, and this is recommended to the students
who are believed to be the most talented ones. The second most advanced track
is senior secondary education, followed by four pre-vocational tracks. Two more
tracks are specifically designed for students with serious learning problems and
those that need individual support.

The main research question is to what extent the recommendations are
determined by student performance and to what extent home background plays
a role. Through the fitting of a random slopes model the analysis shows to what
extent the effect of student performance varies across schools. An additional
research question relates to the effect of schools using a specific test for their
recommendation. Most schools (83 per cent) base their recommendation in part
on the scores of a widely used standardized test (the CITO test). The analysis
addresses the extent to which the level of the recommendation is more positive
when schools do not use the CITO test and to what extent not using the CITO
test interacts with the effect of student performance on the recommendation.
One might conjecture that the effect of student performance on the recom-
mendation is less strong in the absence of the CITO test. Furthermore, it is
conceivable that use of the CITO test accounts to some extent for a variation
in the effect of student performance.

Student performance is measured by a test that correlates strongly (r = 0.87)
with the CITO test. It relates to skills and knowledge in both reading and
mathematics. The scores on this variable are transformed into z-sores, so that
their mean equals zero and the standard deviation is equal to one. Home
background is assessed by means of four categories that relate primarily to the
highest level of education attained by either parent. The category that involves
the lowest level (lower vocational education or less) is split into two categories
on the basis of the parents’ country of birth. Students with parents born in
either Turkey or Morocco make up a special category. Most other students with
poorly educated parents are Dutch. The largest category contains the students
with parents of whom no one has attained a higher level than upper secondary
education. The highest category relates to students of whom at least one parent
has successfully finished tertiary education. The frequency distribution of the
home background characteristics is presented in Table 11.3.
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Table 11.3 Frequency distribution of home background 
(parents’ education and origin)

(%)

Lower vocational education or less; 6.0
parents born in Turkey or Morocco

Lower vocational education or less; others 23.4
Upper secondary education (reference group) 44.3
Tertiary education 26.3



For the analysis, three dichotomous home background variables (‘dummy
variables’) were created. These variables can take on either the value one or zero.
If a student belongs to a particular category, the student gets a score equal to one
on the dummy variable that indicates the category. All other students get a zero
score. For example, the students with at least one parent having attained a tertiary
education level get a score equal to one on the tertiary education dummy, whereas
all others get a zero score on this dummy variable. There is no dummy variable
for the upper secondary education category. The students in this category are
identified by the fact that they get a zero score on all three home background
dummy variables. This category serves as the reference group. The intercept in the
multilevel model expresses the score for this category of students (if their scores
on the other variables equal zero as well). The advantage of using dummy variables
is that the analysis specifically reveals the differences among the categories. This is
especially appropriate for discrete non-dichotomous variables.

Whether a school makes use of the CITO test for their recommendations is
also indicated by means of a dummy variable. Schools that do not make use of
this test (17 per cent) get a score equal to one and the others get a zero score.
To assess whether the effect of student performance is weaker in schools that
do not use the CITO test, an interaction term was created of student performance
with the dummy variable that indicates use of the CITO test. This is, in fact,
the multiplication of both variables. Schools that do not use the test get a zero
score on the interaction term.

In order to answer the research questions two multilevel analyses were
conducted. In the first analysis, use of the CITO and its interaction with student
performance are not yet included as explanatory variables. Thus, one can observe
to what extent including these terms affects the variance across schools of the
student performance effect. The results of the analyses are reported in Tables
11.4a and 11.4b.

We can conclude from the tables that nearly all the effects included in the
models are statistically significant. The only exception is the effect of the parents’
educational level for Turkish and Moroccan students. The effects of the other
two background dummy variables show significant effects. This means that
students with similar performance levels but different home backgrounds still
get different recommendations. The intercept in Table 11.4a indicates that
students with an average performance level and parents with an educational level
no higher than upper secondary (the reference group) get a recommendation
of 10.74 on average. This is slightly below the highest pre-vocational track. A
student with poorly educated parents, but an average performance level, gets a
recommendation 0.61 lower, which corresponds to a recommendation between
the highest and the second highest pre-vocational level. If the student’s parents
are highly educated, however, the student would get a recommendation 0.31
higher. The difference between students with poorly and highly educated parents
is 0.92 on a scale that ranges from 1 to 15. This difference applies to students
with similar performance levels. It should also be noted that the effect of
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performance largely outweighs the effects of home background. If we compare
the recommendation for students that score one standard deviation above and
below average, we get a difference equal to 5.72 (2 × 2.86), which is more than
six times as large as the difference between students from advantaged and
disadvantaged backgrounds. In a standard normal distribution 16 per cent of
the cases have a score less than one standard deviation below the mean. The
same goes for the opposite tail of the distribution.

The random effects in Table 11.4a show that the intercept variance at the
school level (0.56) is much smaller than the variance at the student level (3.79).
This indicates that the variance in recommendations between schools is much
smaller than the variance between students within schools. The intraclass
coefficient (�) equals 0.13. Table 11.4a also show a significant variance of the
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Table 11.4a Predictors of school recommendations – first model

Fixed effect Effect Std error Significance

Intercept 10.74 0.05 0.000
Student performance 2.86 0.04 0.000
Low education parents; Turkish/Moroccan –0.01 0.12 0.912
Low education parents; others –0.62 0.06 0.000
High education parents 0.31 0.06 0.000

Random effects
School level variance 0.56 0.06 0.000
Variance of student performance effect 0.32 0.04 0.000
Correlation student performance/school –0.41 0.08 0.000

intercept
Student level variance 3.79 0.06 0.000

Table 11.4b Predictors of school recommendations – second model

Fixed effect Effect Std error Significance

Intercept 10.66 0.06 0.000
Student performance 2.90 0.04 0.000
Low education parents; Turkish/Moroccan 0.01 0.12 0.907
Low education parents; others –0.61 0.06 0.000
High education parents 0.31 0.06 0.000
CITO test not used 0.43 0.12 0.001
Interaction student performance/CITO test –0.22 0.11 0.041

not used

Random effects
School level variance 0.53 0.06 0.000
Variance of student performance effect 0.31 0.04 0.000
Correlation student performance/school –0.39 0.08 0.000

intercept
Student level variance 3.79 0.08 0.000



effect of student performance across schools. The negative correlation (–0.41)
expresses that in schools with relatively high recommendations, the effect of
performance on the recommendation is relatively low (and vice versa). In order
to enhance the interpretation of the performance effect variance (0.32) it is
advisable to express it as a standard deviation. This yields 0.57 as a result (�0.32
= 0.57). This indicates that in schools where the size of the effect is one standard
deviation below average, the effect of student performance on the recommen-
dation equals 2.11 (2.86 – 0.57 = 2.29). In schools where the effect is one
standard deviation above average the effect is 3.61 (2.86 + 0.57 = 3.43).

Table 11.4b shows the effects related to the use of the CITO test. The main
effect (0.43) indicates that schools not using this test tend to give slightly higher
recommendations when taking into account the effects of student performance
and home background. The interaction effect shows that the effect of student
performance is also slightly smaller in schools that do not use the CITO test.
The effect is 2.90 in schools that use this test and 2.78 (2.90 – 0.22 = 2.78)
in schools that do not use the test. This interaction effect accounts for just a
rather limited portion of the variance in the effect of student performance across
schools. The variance of this effect equals 0.32 in model 4a, and including the
effects of CITO use reduces this to 0.31. The impact of including the interaction
term on the correlation of the performance effect with the intercept is also very
limited, as it decreases from –0.41 to –0.39. Although use of the CITO test
can account for some part of the variation in the effect of student performance,
its impact turns out to be quite limited.

Example 3: growth curve analysis

Multilevel analysis is also highly useful when it comes to analysing data that
relate to individual growth. In this application of the technique, repeated
measurements per individual constitute the lowest level. The present example
involves a three-level structure. Schools represent the highest level units. Students
nested within schools represent an intermediate level and at the lowest level we
find repeated language scores measured over a range of six years. One important
advantage of using multilevel analysis is that it can easily handle incomplete
records with regard to the outcome measures (again, compare to Chapter 12).

For the analyses we make use of the Dutch PRIMA data that were collected
in February of the years 1995, 1997, 1999 and 2001. Starting with the school
year 1994–95, every two years data have been collected at a few hundred primary
schools in the Netherlands. Since 2007 this has changed to a three-year cycle.
Each year data on student achievement were collected in grades 2, 4, 6 and 8.
In the Netherlands, kindergarten and primary education are integrated into a
single structure that comprises eight grades. Children enter into the first grade
at the age of four. Most of the students in grade 2 are six years old at the time
of testing. Our analyses relate exclusively to students in schools that participated
in all four waves of data collection from 1995 until 2001.
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The design of the PRIMA cohorts allows for the analysis of individual student
growth trajectories. Grade 2 students in 1995 will reappear as fourth graders in
1997, as sixth graders in 1999 and as eighth graders in 2001. However, each
year a substantial number of schools end their participation in PRIMA, and these
are then substituted by new ones. The representative samples comprise approxi-
mately 400 schools each year, but only 149 schools participated each and every
year from 1995 through 2001. More detailed analyses of schools leaving and
entering the PRIMA cohorts show no signs of systematic dropout (Roeleveld
and Van der Veen 2007).

The analyses focus on the growth trajectories for language skills of 5,150
students. To be included in the analyses a valid score on at least one point of
measurement was required. Only 41 per cent of all 5,150 students that were
included in the analyses took part in the data collection at all four points in
time. The general language skills of the students present the dependent variable
in this study. The language tests taken in each grade have been equated according
to IRT (see Chapters 8 and 9) so that student scores in different grades can be
related to a common scale. This allows for the estimation of individual growth
trajectories. Table 11.5 presents descriptive statistics for the assessed language
skills at the four points in time.

Three levels are specified in our multilevel model (school, student and meas-
urement occasion). Time is the only explanatory variable in the analyses presented
here. Thus, it is estimated how much progress students make per year. As the
growth in language skills may follow a curvilinear pattern, a quadratic effect of
time is estimated in addition to the linear effect. The effect of time is allowed
to vary both at the school and student level, as it seems likely that growth
trajectories vary both between schools and individuals. Time is coded in such a
way that its effects as estimated in the analyses express the progress made per
year. Language scores measured in grade 2 are denoted by a zero score on the
time variable. The scores from grade 4, which are measured two years later, are
denoted by a score of 2 and the scores in grade 6 and 8 are denoted by scores
of 4 and 6 respectively. The MLwiN software was used to conduct the analyses
reported.

The findings are summarized in Table 11.6. The fixed effects reflect the
average growth pattern across all schools and students, whereas the random effects
denote the variation across schools and students. The fixed intercept (Grand
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Table 11.5 Descriptive statistics for language skills

Mean Std. deviation Number

Measurements in 1995 (grade 2) 969.98 34.59 3,565
Measurements in 1997 (grade 4) 1,040.70 36.18 3,425
Measurements in 1999 (grade 6) 1,080.75 34.84 3,224
Measurements in 2001 (grade 8) 1,118.52 34.60 3,188



Mean) provides an estimate of the average score in grade 2 (that is, when the
value of the time variable equals zero). The analyses further yield significant
linear and quadratic effects of time. The positive sign of the linear term and the
negative quadratic effect suggest a pattern of declining growth, which is in line
with the figures presented in Table 11.5.

The random effects are particularly interesting as they reveal to what extent
the growth patterns differ across schools and students. The variances of the time
effects indicate how growth in language skills differs between schools and
students. The correlations indicate to what extent a high starting level coincides
with the rate of improvement. The school- and student-level intercept variances
indicate to what extent the starting level of the language scores varies between
and within schools. The variance at the lowest level denotes the remaining
variation. The school- and student-level variances indicate considerable difference
in language scores both between and within schools at the first measurement.
The school-level variance (170.119) corresponds with a standard deviation equal
to 13.04. The student-level variance corresponds with a standard deviation 
equal to 20.90. With regard to the schools this implies a range of over 26 points
(twice the standard deviation) for the middle 68 per cent in grade 2. On either
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Table 11.6 Growth in language skills over time

Effect Standard error Significance

FIXED EFFECTS

Intercept (Grand Mean) 969.730 1.218 0.000
Time – linear effect 36.749 0.761 0.000
Time – quadratic effect –2.121 0.114 0.000

RANDOM EFFECTS

School level variances
Intercept 170.119 25.342 0.000
Time – linear effect 63.250 9.865 0.000
Time – quadratic effect 1.376 0.222 0.000

School level correlations
Intercept – Time linear –0.34 0.003
Intercept – Time quadratic 0.25 0.029
Time linear – Time quadratic –0.98 0.000

Student level variances
Intercept 436.665 23.074 0.000
Time – linear effect 4.607 1.229 0.000

Student level correlation
Intercept – Time linear –0.04 0.686

Measurement level variance
Intercept 596.272 11.367 0.000



tail of the distribution, 16 per cent of the cases lie outside the range of one
standard deviation from the mean. For students within schools the range is close
to 42 points. These are substantial gaps, as students gain about 71 points in the
first two years after the first measurement (see Table 11.5).

The analyses show significant variance at both the student and school level of
the linear time effect. The quadratic effect turns out to vary only at the school level.
Fitting a model with random quadratic effects of time at the student level yields
a zero estimate. These results are not reported in the table. The random effects 
at the school level point to a remarkable pattern. The negative covariance between
the intercept and the linear time effect indicates that linear growth is less 
strong in schools with a relatively high starting level. The correlation coefficient
(r) between the linear effect and the intercept equals –0.34. The quadratic effect
is positively correlated with the intercept (r = 0.25), which suggests less decline
in growth for schools with a high starting level. The findings also reveal an almost
perfectly negative correlation (r = –0.98) between the linear and quadratic effects
of time. This implies that if linear growth is strongly posi tive, the quadratic effect
is strongly negative (that is, strong linear growth also implies a strong decline in
growth in the higher grades and vice versa). This remarkable finding has previously
been reported for partly the same cohort of students by Guldemond and Bosker
(2005).

The variance in growth at the student level is rather modest in comparison
to the school level (4.607 vs. 63.250). The correlation between the linear time
effect and the intercept at this level is very small (–0.04) and statistically insigni -
ficant. The moderate variance implies that within schools, students progress at
a fairly similar pace. The negligible correlation between the intercept and time
effect at the student level indicates that the limited variation in learning gain
within schools is largely unrelated to the students’ starting levels.

Example 4: multivariate multilevel models

Multivariate multilevel regression models have been described by Goldstein
(1995, 2003). They are multilevel regression models that contain more than
one response variable. Hox (2002) suggests they are comparable to classical
MANOVA, where there are several outcome measures.

This present example also involves a further analysis of the Dutch PRIMA data.
In this case we are dealing with two distinct outcome measures per individual
(language and mathematics achievement). The data were collected in 2001 and
relate to 3,232 students in 149 schools. Similar to the repeated measurement
models, the scores per student constitute the lowest level. Often researchers will
choose to conduct separate analyses for each dependent variable, but for a number
of reasons, a joint analysis may be advisable (Snijders and Bosker 1999: 201):

• Multivariate multilevel analysis yields estimates of the correlations between
the outcome measures. The findings indicate to what extent the correlation
is situated at the individual level or at a higher level.
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• Only by means of multivariate multilevel analysis is it possible to test whether
the effect of an explanatory variable differs from one dependent variable to
the next.

• Testing the joint effect of an independent variable on a number of outcome
measures requires a multivariate analysis.

• If the dependent variables are strongly correlated and at the same time the
data on the outcome measures are incomplete for a large number of cases,
the tests of the effects for the explanatory variables are more powerful.

The example presented in this section focuses on the first two reasons listed
above. The analyses relate to how far the school- and student-level variances are
different for language and mathematics and to what extent the effects of home
background differ for both outcome variables. Home background was opera-
tionalized by means of the same dummy variables that were used for the analyses
of the school recommendations (see the section on random slopes models). The
test scores were transformed into z-scores, so that the mean and standard
deviation for both variables are identical. The data were analysed using the
MLwiN software. The next section then presents an example of the multivariate
multilevel model for meta-analysis. In these cases, the third and fourth reasons
listed above apply as well.

The first stage in the analyses entails the fitting of a multivariate zero model.
The results are reported in Table 11.7a. Besides a partitioning of the variances
into a student- and a school-level component, the analyses produce the correlation
between both outcome variables for each level separately. The analyses also
involve the estimation of an intercept for language and mathematics. Neither of
the intercepts differ significantly from zero, which is hardly surprising given the
transformation into z-scores. The partitioning of the variances into a student
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Table 11.7a Language and mathematics – zero model

Effect Standard error Significance

FIXED EFFECTS

Intercept, language –0.027 0.033 0.409
Intercept, mathematics –0.040 0.037 0.275

RANDOM EFFECTS

School level variance, language 0.108 0.018 0.000
School level variance, mathematics 0.138 0.022 0.000
School level correlation, language/

mathematics 0.532 0.000
Student level variance, language 0.894 0.023 0.000
Student level variance, mathematics 0.876 0.023 0.000
Student level correlation, language/

mathematics 0.534 0.000



and a school component yields a slightly larger amount of school-level variance
for mathematics than for language (0.138 vs. 108). At the student level it is the
other way around (0.894 vs. 0.876). This implies that the intraclass coefficient
(�) for language equals 0.11, while for mathematics � = 0.14. The correlation
between language and mathematics is virtually the same at the school and student
level (r = 0.53).

An important feature of multivariate multilevel modelling is that it provides
an opportunity (by means of �2-tests) to assess whether the fixed and random
effects differ significantly between the outcome measures. The results of these
tests are displayed in Table 11.8. For the zero model none of the differences
between language and mathematics (with regard to the intercept and the
variances) are statistically significant.

In the second stage, the home background dummy variables are included in
the model. The outcomes of this analysis are presented in Table 11.7b. The
analyses show virtually identical effects on language and mathematics for students
with parents whose educational level is high and for students with parents whose
educational level is low, unless one of the parents was born in Turkey or Morocco.
In that case the effect is much stronger for language than it is for mathematics
(–0.839 vs. –0.335). The intercept, which denotes the average achievement level
of the students in the reference group (namely students with parents whose
educational level is medium), is higher for language than it is for mathematics
(0.034 vs. 0.092). For language the difference between the Turkish and
Moroccan students with poorly educated parents and the reference group is
particularly large. The difference between the reference group and the other
groups is highly similar for both outcome measures. The findings reported in
Table 11.7b indicate that nearly all effects in the model that include the home
background dichotomies as explanatory variables are statistically significant. The
only exception is the intercept for mathematics. This means that with regard to
mathematics, the average score for the students in the reference group does not
deviate significantly from zero, which is the mean score. For language, the
average of the reference group is significantly larger than zero. This is probably
due to the particularly large language disadvantage for the Turkish and Moroccan
students. The correlations at the school and student level in model 1 differ only
slightly from the correlations in the zero model.

Three out of the four variance components in model 1 show no more than
modest decreases in comparison to the zero model. The main exception is the
school-level variance for language achievement, which has decreased by 64 per
cent (from 0.108 to 0.039). This means that controlling for home background
accounts for nearly two thirds of the school-level variance in language scores.
This is largely due to the strong concentration of Turkish and Moroccan students
in a limited number of urban schools. The decrease for the other three variance
components amounts to a modest 7 per cent in each case.

Table 11.8 reports to what extent the differences between language and
mathematics are statistically significant for the effects presented in Table 11.7b.
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With regard to the fixed effects, the only significant difference relates to the
effect for the Turkish and Moroccan students. Their disadvantage is much larger
for language than it is for mathematics. In fact, with regard to mathematics their
disadvantage hardly differs from the disadvantage for the other students with
poorly educated parents (–0.335 for the Turkish and Moroccan students; –0.383
for the others). With regard to the random effects, we can conclude that the
school-level variance for language is significantly smaller than it is for mathematics,
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Table 11.7b Language and mathematics – model 1 (home background characteristics)

Effect Standard error Significance

FIXED EFFECTS

Intercept, language 0.092 0.032 0.004
Intercept, mathematics 0.034 0.042 0.419
Low education parents; Turkish/ –0.839 0.072 0.000

Moroccan – lang.
Low education parents; Turkish/ –0.335 0.077 0.000

Moroccan – math.
Low education parents; others – language –0.380 0.040 0.000
Low education parents; others – mathematics –0.383 0.042 0.000
High education parents – language 0.359 0.044 0.000
High education parents – mathematics 0.360 0.046 0.000

RANDOM EFFECTS

School level variance, language 0.039 0.009 0.000
School level variance, mathematics 0.128 0.021 0.000
School level correlation, language/mathematics 0.538 0.001
Student level variance, language 0.829 0.021 0.000
Student level variance, mathematics 0.815 0.022 0.000
Student level correlation, language/mathematics 0.501 0.000

Table 11.8 Difference of effects for language and mathematics

Model 0 Model 1

Diff. Sign. Diff. Sign.

FIXED EFFECTS

Intercept 0.013 0.710 0.059 0.128
Low education parents; Turkish/Moroccan — — 0.504 0.000
Low education parents; others — — 0.003 0.982
High education parents — — 0.001 0.999

RANDOM EFFECTS

School level variance 0.030 0.227 0.089 0.000
Student level variance 0.017 0.531 0.014 0.868



whereas this is not the case for the student level. This results from the fact that
home background accounts for a large part of the school-level variance.

Example 5: multivariate multilevel meta-analysis

Chapter 13 of this volume focuses in detail on the topic of meta-analysis and
its potential value in EER. It also provides an example of a multilevel meta-
analysis used to test the dynamic model. Here we provide a further example of
a multivariate multilevel meta-analysis used to test the impact of specific
educational interventions. The study of self-concept research in school settings
using a multivariate multilevel model meta-analysis by O’Mara et al. (2005)
provides an example of new developments in multivariate multilevel models. The
use of multilevel approaches that incorporate random error variance is desirable
because participants can be seen to be clustered (nested) within the different
studies included in a meta-analysis (for further discussion see Hox and De 
Leeuw 2003). Multivariate analyses allow the researcher to incorporate a range
of different outcomes of interest. O’Mara et al. (2005) argue that an advantage 
of such a multilevel multivariate approach is that it also addresses the issue of
independence that has affected traditional meta-analysis approaches and provides
better estimates of the effect sizes of interventions and their statistical significance.

Meta-analysis uses statistical results from a range of studies that address a
similar research question and often seeks to establish an average effect size and
estimate of the statistical significance of a relationship. In EER this might be
the effects attributable to a particular approach to teaching or of a school reform
programme. However, one might also be interested in the variation in effect
sizes across studies of interest, as in a random effects analysis that seeks to
distinguish variance that is the result of sampling variance and that is attributable
to real differences between studies. It is, thus, explicitly acknowledged that study
outcomes may be heterogeneous. Thus, meta-analysis can be viewed as a special
case of multilevel analysis. In meta-analysis there is typically limited access to
original data – usually results are published in the form of selected statistics,
such as effect sizes, means, standard deviations or correlation coefficients. O’Mara
et al. (2005) argue that the advantage of a multilevel approach to meta-analysis
is its flexibility to include a range of potential explanatory variables and multiple
outcomes. They illustrate this ability by using data on various interventions
intended to enhance self-concept. They also point to the importance of
recognizing the existence of different domains of self-concept, including academic
and behavioural (Marsh 1993; Marsh and Craven 1997).

O’Mara et al. (2005) note that there is evidence of a reciprocal relation
between self-concept and skill building, such that direct self-concept interventions
can enhance both students’ self-concept and related performance outcomes.
They cite the reciprocal relationship between academic attainment and academic
self-concept, and findings that prior levels of academic self-concept lead to higher
levels of later academic achievement, beyond what can be explained by prior
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levels of academic achievement. The advantages of using multilevel modelling
include that:

. . . improved modelling of the nesting of levels within studies increases the
accuracy of the estimation of standard errors on parameter estimates and
the assessment of the significance of explanatory variables.

(O’Mara et al. 2005: 5)

The meta-analysis of O’Mara et al. (2005) included studies published in
English, involving children and adolescents with a mean age of 18 or younger,
and including a control group drawn from the same population as the intervention
group with a global- or domain-specific measure of self-concept. The following
hierarchical model was used for comparison with a traditional fixed effects analysis
as shown in equation (5):

dijk = �000 + �1W1j + �2W2j + . . . + �sWsj + v0k + u0jk + eijk , (5)

where dijk is the mean effect size, �0 . . . �s are the regression coefficients, W1j

. . . Wsj are the study characteristics (predictor or moderator variables), v0k is the
systematic variability in study k not captured by the s predictors, u0jk is the
systematic variability in intervention j not captured by the s predictors, and eijk

is the sampling error for study k (Bryk and Raudenbush 1992). The intercept
(�000) is the estimated effect size for a study with zero values for all moderator
variables. The remaining regression weights (�0 . . . �s) indicate the amount of
expected variation in the effect size for a one-unit change on each variable.

The findings revealed that self-concept was enhanced through various
intervention treatments. Interestingly, the estimated mean effect size of 0.31
identified in the fixed-effects model increased to 0.47 in the multilevel analysis.
Significant heterogeneity was also found in the effect sizes between different
studies and a number of predictor variables were tested that improved the model
fit. The results confirm that the fixed-effects model was less accurate in identifying
statistically significant relationships, and the findings from the multilevel models
supported the construct validity approach. In summary, O’Mara et al. conclude
that:

. . . multilevel modelling has proven to be a useful new direction for meta-
analysis. It affords greater confidence in the accuracy of the results than a
traditional fixed effects model, and also allows the results to be generalised
to the greater population of studies.

(2005: 10)

Example 6: cross-classified models

The development of multilevel modelling techniques and appropriate statistical
programs has been crucial to the development and expansion of EER over the
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last two decades. Having introduced the underlying basic principles of multilevel
design and demonstrated their value in EER for the study of the size of
institutional effects on student outcomes at different levels (for example, school
board or neighbourhood, school, department and classroom/teacher level),
including elaborations such as multilevel growth curve models, this section
focuses on two further approaches that enable researchers to address more
complex questions about institutional effects that reflect the realities of students’
educational experiences. These are cross-classified multilevel models and multi-
variate multilevel models.

The principles underlying cross-classified models and their analysis have been
described by Goldstein (1995, 2003) and Rasbash and Goldstein (1994) and a
useful guide to their application is given by Hox (2002). Such an approach
allows the researcher to study two sources of higher level influence simultaneously.
In EER this is of particular interest because students may be clustered in (that
is, be members of) different institutions or other higher level units at the same
time point or at different time points. As has been noted elsewhere in this chapter,
multilevel problems must be explained with the aid of theories that recognize
the existence of multilevel structures. If it is hypothesized that there are effects
of social context on individuals (in EER, effects on students are of particular
interest), ‘these effects must be mediated by intervening processes that depend
on characteristics of the social context’ (Hox 2002: 7). Creemers and Kyriakides
(2008) have elaborated a dynamic model that seeks to advance such theoretical
understanding building on the earlier comprehensive model developed by
Creemers (Sammons 2009). Nonetheless, as yet EER theories have paid little
attention to the notion of multiple institutional influences operating simulta-
neously, rather than merely sequentially.

For example, a student may live in one neighbourhood and attend one school
at the same time for a period of years. Both are forms of clustering that are of
interest to those studying the sources of variation in individual students’
educational outcomes over time. We can hypothesize (as social geographers do)
that the neighbourhood a student lives in may shape students’ outcomes, perhaps
through peer influences or other opportunities that vary on a spatial scale. In
addition, the school a student attends is also likely to have an influence on their
outcomes as evidenced by multilevel studies discussed earlier in this chapter.
Although there may be a strong relationship between the neighbourhood and
school attended, in most systems young people in some neighbourhoods will
attend a range of schools, while in any one school students may come from
homes in a number of different neighbourhoods. This is especially likely to occur
in education systems that encourage choice and diversity of provision or that
involve selection of some kind.

Similarly, over the course of their education, students typically attend more
than one school at different times (most commonly there is a transition according
to phases of education with a primary/elementary school followed by a
secondary/high school, though in some systems a middle school may be attended
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after primary and before a move to secondary school). In addition, some students
move schools within phase for various reasons such as a parent’s house/
employment change or family break-up leading to relocation. We cannot assume,
therefore, that only one institution (school) influences students’ outcomes. Each
institution previously attended as well as the current school is likely to help shape
a student’s subsequent outcomes. It is of substantive interest to explore the
relative importance of primary and secondary-school effects on students’ longer
term educational outcomes – for example, whether primary-school effects ‘last’
(the question of continuity in effects). This is because we want to know whether
the primary school attended still shapes students’ progress trajectories while they
are at secondary school, over and above their impact on students’ attainment
levels when they transfer to secondary school. We may miss-specify any secondary
school models if we ignore such possible continuing effects in the longer term.
In addition, the outcomes of mobile students (those who change schools once
or more during a particular phase of education) similarly may be affected by the
various schools they have attended as well as by having moved school.

In the scenarios described above there is a need for a modelling approach
that can take into account these different group memberships simultaneously
and identify their separate effects on student outcomes. Cross-classified multilevel
models enable the different group memberships (sources of clustering) to be
specified at higher levels. Without cross-classified models it was implicitly assumed
that the impact of primary schools operated only while students attended the
primary school and influenced the final level of attainment (or other outcomes)
a student achieved at the end of primary school. In studies of secondary-school
effects it was assumed that good control for students’ prior attainment at entry
to secondary school was sufficient to allow the identification of secondary-school
effects on later outcomes, such as examination results without further consid -
eration of primary school influences. Similarly, prior to the development of cross-
classified models, EER studies generally excluded mobile pupils from analyses
of school effects, or otherwise the effects of mobility were modelled only in the
fixed effects part of a traditional two-level model (in terms of the number of
months or terms a student had attended their current institution, or the number
of previous schools attended). While this enabled identification of overall mobility
effects on individual students to be explored, it ignored any possible effects of
the previous institution (school) because these were not estimated as they were
not specified in the random parameter matrix.

Hox (2002) notes that cross-classification can occur at any level in a
hierarchical data set. The examples noted above concern cross-classification at a
higher level (typically level two), but cross-classification can also occur at lower
levels, such as the student. Hox (2002) illustrates this point with an example of
students in a computer class where there are several parallel classes taught by
different teachers. As a result, at the student level, students obtain grades for
several different exercises given by several different teachers, because the exercises
are graded by all available teachers. Here therefore, students are nested within
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classes, with a cross-classification of teachers (graders) and exercises nested within
classes. Since there are likely to be differences between classes and students, in
this example the cross-classification of exercises and teachers would be defined
at the lowest level, nested within pupils, nested within classes.

An early example of a cross-classified multilevel study in the EER field is
provided by Goldstein and Sammons (1997) who sought to address the question
of the continuity of school effects measured at different stages of a student’s
school career. They conducted a re-analysis of an existing data set (Mortimore
et al. 1988) to examine possible long-term effects of previous institutional
membership (for example, primary school attended) on students’ later attainment
at secondary school. The analysis built on earlier published research by Sammons
et al. (1995) that had attempted to address the issue of continuity in primary-
school effects using traditional multilevel approaches. This earlier study was
limited in that it did not consider the full cross-classification of individual students
in terms of their secondary by primary school attendance. Goldstein and Sammons
(1997) re-analysed the data set to provide a more detailed investigation of the
question of continuity of school effects, by simultaneously estimating the joint
contributions of primary and secondary schools using the newly (at that time)
developed MLwiN program extension to enable cross-classifications to be studied.

Sammons et al. (1995) had presented data on the secondary school examination
attainment (GCSE results) for students at age 16 who had originally been included
in a classic early EER study conducted in the 1980s in 50 inner-London primary
schools called the Junior School Project (JSP; Mortimore et al. 1988). These
students had been followed-up in secondary education to the end of compulsory
schooling at age 16. Two types of two-level analysis had been carried out, one with
students classified by their secondary school and one with students classified by their
junior (primary) school. They included in these models two measures of student
prior-attainment at age 11 as baselines in their analyses of secondary-school effects
– the London Reading Test (LRT) score and a verbal reasoning (VR) band (as well
as other student level one predictors for each student, including free school meals,
social class and ethnic group as covariates) – to evaluate student progress and
estimate the size of the school effect. The level two variance for primary and that
for secondary schools was found to be approximately the same in both analyses.
They thus modelled junior and secondary-school effects separately, but what they
could not do using standard two-level models was examine their influence
simultaneously. Sammons et al. (1995) concluded that there was evidence that 
the primary school attended still affected students’ later attainment at age 16,
because they found significant level two variance in the junior school analysis even
after controlling for student attainment at the end of primary school (age 11).
However, they could not distinguish the separate contributions of primary and
secondary schools in accounting for the variance in students’ examination
outcomes at age 16.

Goldstein and Sammons (1997) later extended the original analysis by
Sammons et al. (1995) to illustrate the application of newly developed cross-
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classified approaches, although they omitted some of the student-level explanatory
variables in the original study for simplicity and due to sample size, given the
greater complexity of the models. They extended the multilevel models by
including both the primary school and secondary school, identified in the same
analysis as two random cross-classified factors. The basic model is shown in
equation below (6):

yij1j2 = 	k �kxkij + uj1 + uj2 + eij (6)
var(uj1) = �2

u1, var(uj2) = �2
u2, var(eij) = �2

e .

Thus the outcome variable (GCSE total examination score at age 16, y) is
modelled as a function with an overall intercept, together with residual error
terms for both junior and secondary schools and an individual residual 
error term for students (e). The subscript 1 in the equations for u refers to junior
(primary) and subscript 2 refers to secondary schools. The sample size in the
analysis was only 758 students with 48 junior and 116 secondary schools, so
the authors noted that results where there is a lack of statistical significance 
or lack of variation should be treated carefully, because the number of students
in the individual secondary schools was typically very small in this sample.

To specify a cross-classified bivariate model, level one was used to define the
bivariate structure, that is with up to two units (the GCSE or LRT response)
within each level two unit (student) within a cross-classification of junior by
secondary schools. The junior-school classification was specified at level three,
and the secondary-school classification at level four, where every secondary school
was assigned a dummy variable whose coefficient is random (with a single variance
term) at level four, and these variances were constrained to be equal. Because
the response was bivariate at levels two and three, the variances of GCSE and
LRT and their covariance were parameters to be estimated.

To simplify the analysis and make it more manageable Goldstein and Sammons
(1997) reported that all cells of the cross-classification with only one student
were omitted. In total this omitted 31 secondary schools, 1 junior school and
146 students from the data set. Analyses were conducted for both the full and
reduced data sets, using the purely hierarchical models and revealing no
substantial differences in the results. Table 11.9 (reproduced from Goldstein
and Sammons) gives results for fitting this model with different fixed coefficients
and assumptions about the level one variance. It can be seen that the between-
junior variance is always larger than that between secondary schools. As further
explanatory variables are incorporated that measure achievement at the end of
junior schooling, so relatively more of the junior-school variance in GCSE
attainment at age 16 is explained, as might be expected.

In model C the size of the variances attributable to primary (junior) and
secondary schools are compared. Analyses A and B (model A is a better-specified
model) of Table 11.9 present a measure of the ‘value added’ by secondary schools
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after adjusting for student intake performance and the effect of the junior school
attended, which is not captured by the LRT and VR band variables that measure
attainment at the end of primary school/beginning of secondary school. None-
theless, although analysis A or B provides the better estimates of secondary-
school effects than analysis C, the junior and secondary variances cannot be
compared directly, because end-of-junior attainments have been fitted.

Another more recent and far more complex example of the use of cross-
classified models is provided by Leckie (2009). This sought to examine the
complexity of school and neighbourhood effects and study the impact of student
mobility, as well using data from the national pupil database in England. Multiple
membership models allow for pupil mobility, and Leckie (2009) builds on the
work of Goldstein et al. (2007) to present a more detailed study of pupil mobility
between schools and between neighbourhoods to allow the relative importance
of secondary schools, neighbourhoods and primary schools to be investigated
on both achievement and progress using a very large data set. Leckie (2009)
argues that

Until recently, research into pupil mobility has been held back by both a
lack of data on pupil movements and also by the absence of appropriate
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Table 11.9 Variance components cross classified model for GCSE exam score as
response analyses/models

A B C

Fixed
Intercept 0.51 0.50 0.25
Males –0.21 (0.06) –0.19 (0.06) –0.34 (0.07)
Free school meal –0.22 (0.06) –0.23 (0.06) –0.37 (0.08)
VR2 band –0.39 (0.08) –0.38 (0.08)
VR3 band –0.71 (0.13) –0.71 (0.13)
LRT score 0.31 (0.04) 0.32 (0.04)

Random
Level 2:
(Junior) �2

u1 0.025 (0.013) 0.036 (0.017) 0.054 (0.024)
(Secondary) �2

u2 0.016 (0.014) 0.014 (0.014) 0.019 (0.02)

Level 1:
�2

e0 0.50 (0.06) 0.554 (0.06) 0.74 (0.05)
�e01 0.092 (0.03) 0.064 (0.03) 0.10 (0.05)
�e02 0.093 (0.018)
�2

e2 0.033 (0.022)

–2Log likelihood 1,848.8 1,884.1 2,130.3

Note: The exam score and LRT score have been transformed empirically to have N(0, 1) distributions.
FSM is a binary (yes, no) variable. At level 2 the subscript 1 refers to junior and 2 to secondary
school. At level 1 the subscript 0 refers to the intercept, 1 to males and 2 to LRT.

Source: after Goldstein and Sammons 1997



multilevel methodology. However, the recently established national pupil
database in England and the development of cross-classified and multiple-
membership multilevel models now make it possible to analyse a wide range
of complex non-hierarchical data structures in models of educational
achievement (Fielding and Goldstein, 2006; Rasbash and Browne, 2001).

(Leckie 2009: 4)

Leckie (2009) illustrates how the actual contribution of secondary schools to
the variance in outcomes for a given student varies as a function of the number
of schools that the student attends and the time they spend in each school. He
argues that models that ignore the multiple membership structure lead to biased
estimates of school effects and that the bias increases with the degree of student
mobility. Leckie (2009) based his analysis on data for over 4,200 students in
264 secondary schools living in 3,175 neighbourhoods and had previously
attended 3,107 primary schools. As students can move between both schools
and between neighbourhoods, the models examined multiple membership
structures. In all, 8 per cent changed schools, but a much higher proportion
moved home (27 per cent) and neighbourhood (23 per cent). Leckie (2009)
reports a succession of models of increasing complexity and shows how taking
account of complex non-hierarchical structures in the data set affect the estimates
of both school and neighbourhood effects. It is shown that neighbourhoods
and schools attended in previous phases of education help to explain variation
in students’ test scores and their progress. In addition, the results show how
student mobility between schools and between neighbourhoods also affects out -
comes. After taking into account the impact of mobility, primary schools and
secondary schools are shown to have similar size effects on student progress.

Conclusions and future directions

Methodological debates were particularly evident in the early development of
the EER field as Sammons and Luyten (2009) discuss. Early seminal SER studies
such as Fifteen thousand hours (Rutter et al. 1979) were criticized on a number
of important features of the methodology, and this stimulated significant advances
in subsequent SER designs. Most notably, the development of hierarchical
regression approaches using multilevel modelling that recognized the important
implications of clustering in educational data sets and the need for longitudinal
samples with individual student-level data to compare school performance were
led by authors such as Goldstein (1995) and Bryk and Raudenbush (1992).The
advent of accessible software packages such as HLM and MLWin encouraged
improvements in the size, scale and statistical approaches used in SER during
the late 1980s and 1990s. Those who wish to learn more on the statistical under-
pinnings and more advanced applications are encouraged to consult Goldstein
(2003), Hox (2002) or Snijders and Bosker (1999). Multilevel modelling is a
powerful tool that has particular advantages for the study of institutional effects
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using longitudinal data sets with measures at a variety of levels, due to the ability
to take account of the role of clustering in educational data and identify variance
at different levels in hierarchical structures. This provides more efficient and
accurate estimates of the effects of predictor variables and their associated standard
errors. It also allows the estimation of overall size of effects at higher levels (for
example, school or classroom/teacher) in terms of the proportion of unexplained
variance attributable to each level using the intra-class correlations. Good control
for student’s prior attainment and background characteristics remains essential
for value-added analyses of such effects, however, because poorly specified models
may lead to overestimates of institutional effects through failure to control
sufficiently for pre-existing student intake differences. In addition, multilevel
models allow for estimation of the effects of individual schools (and/or teachers
if appropriate data are collected) with their associated confidence intervals (CIs).
This can be helpful to distinguish more or less effective institutions and those
that are typical in their effectiveness in promoting student academic progress or
other outcomes for further case study (see also Chapter 7). In addition, the way
models can explore random effects (providing evidence of internal variations in
effectiveness, often termed differential effects) has been illustrated. This is
important because it recognizes the complexity in defining educational effective -
ness if some schools or teachers are more effective in promoting better outcomes
for some student groups or in promoting only some outcomes. Multilevel models
allow researchers to address questions of stability (over time), consistency (across
different outcomes) and differential effectiveness (for specific student groups).

In this chapter we have discussed several applications of multilevel modelling
in an educational context. The first example illustrated that multilevel analysis
may produce outcomes that differ substantially from an analysis that does not
take into account the nesting of lower level units within higher level units. The
second example showed how random effects models may be used to estimate
variations in the effect of a student-level variable across schools. The next example
illustrated the usefulness of the multilevel approach for modelling individual
growth and the fourth example showed the merit of multivariate models, which
may be appropriate for analysing data with multiple outcome measures per
student. The fifth example illustrated how the multivariate model can also be
used for meta-analysis. The final example illustrated that the approach can also
be applied when the nesting of lower level units within higher level units is not
strictly hierarchical, using cross-classified models.

The wider availability of large scale longitudinal sets has facilitated the use of
increasingly sophisticated multilevel models in EER in a number of countries in
recent years. The results of such research point to complexity in the study of
institutional and also neighbourhood effects on students outcomes. The further
advances in such statistical modelling applications allow EER to address a wider
range of questions about the role of educational and other influences (for
example, personal characteristics, family and home, or neighbourhood factors)
in shaping students’ educational trajectories at different ages and across different
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phases of education. Further, these models reveal the way that educational
influences may compound or help ameliorate existing inequalities in educational
achievement that are linked with socio-economic disadvantage.

Elsewhere, in a special issue of the School Effectiveness and School Improvement
Journal, we have discussed a number of recent methodological developments in
EER approaches to studying the size of school effects that utilize multilevel
analyses but adopt some innovative new approaches in terms of design and
application (Sammons and Luyten 2009). Despite the important contribution of
multilevel value-added studies of the variation in educational effectiveness over the
last 20 years, there is growing recognition of the need to advance further the
methodology of the study of school effects and to investigate the absolute as well
as the relative effects of schools and schooling. The articles making up the special
issue were drawn together to provide examples of recent innovative studies based
on a number of alternative research methods to assess the effectiveness of education
in terms of a range of outcomes and in different contexts.

Three different approaches were illustrated in discussing the recent develop-
ment of the field in this special issue: regression-discontinuity, growth-curve
analysis and seasonality of learning. We have discussed growth-curve modelling
in this chapter already because this approach is becoming more widely applied
and represents a further refinement of more traditional multilevel analysis by
modelling student growth across more than two time points. A brief summary
of the other two approaches is described below.

Regression-discontinuity is based on a comparison of students’ outcomes 
in adjacent grades. This approach capitalizes on the fact that date of birth is the
primary criterion for assignment to grades in most countries. The difference in
achievement between students from adjacent grades minus the effect of age is
therefore assumed to be a valid measure of the overall effect of extra time in
schooling. This implies that the effect of education is equal to zero if the
difference in achievement can be accounted for solely by the effect of students’
ages in the statistical model. An important practical advantage of the approach
is that it does not require longitudinal data (a major inhibitor of SER in many
countries). Although longitudinal student-level data are indispensible for some
specific research questions (for example, on the reciprocal relation between
attitudes and achievement, or mapping changes in students’ progress or growth
trajectories), they also require more time and resources to collect. Kyriakides
and Luyten (2009) and Luyten et al. (2009) provide illustrations of the applica-
tion of regression-discontinuity to the study of the absolute effects of time in
school. Their results point to the potential value of the regression-discontinuity
approach in allowing analyses of the absolute effects of schooling with a
meaningful zero level, as well as estimates of variation between individual schools
(relative school effects) in the grade effect in the same analysis.

Seasonality-of-learning research can be seen as a special case of growth-curve
analysis and examples are provided by Verachtert et al. (2009) and von Hippel
(2009). In these studies, learning rates during the school year and the summer
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vacation are compared. The basic assumption is that during the school year
learning gains are affected both by in- and out-of-school influences, whereas
during the summer vacation it is assumed that only out-of-school factors operate.
The effect of schooling is assumed to be zero if the rate of learning during the
school year does not exceed the rate of learning during the summer vacation. In
addition, if there is no school-level variance in summer learning but signifi-
cant school variance in school-year learning this provides further evidence of
school effects. While providing possibly more precise estimates of the size of school
effects and illustrating the way summer learning rates may differ for students 
from different groups (for example, advantaged/disadvantaged), a potential
disadvantage is the need for additional points of assessment at the start and end
of the school year to allow vactation learning (or fall back) to be examined.

This chapter showed that multilevel models provide a powerful tool for the
detailed investigation of variation in students’ educational outcomes and the way
various sources of influence help to shape students’ learning and developmental
outcomes over time. However, as with all research, the potential of such models
also rests on the collection of appropriate data, careful measurement of relevant
concepts and guidance from theoretical models as discussed in the first part of
this volume.
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Introduction

Structural Equation Modelling (SEM) currently enjoys widespread popularity in
the behavioural, educational, medical and social sciences. Contributions to the
literature in terms of books, book chapters and journal articles applying SEM
or developing new SEM methodology are appearing at an incredible rate. There
is even a scholarly journal devoted exclusively to SEM, entitled Structural
Equation Modeling: A Multidisciplinary Journal. According to one review of the
literature, SEM is the fastest growing and dominant multivariate statistical
technique of the past two decades (Hershberger 2003). A major reason for this
popularity is that SEM permits researchers to study complex multivariate
relationships among observed and latent variables whereby both direct and
indirect effects can be evaluated. Another reason for this popularity is the
availability of specialized SEM programs. For example, programs such as Amos
(Arbuckle 2006), EQS (Bentler 2004), LISREL (Jöreskog and Sörbom 1996),
Mplus (Muthén and Muthén 2006), Mx (Neale et al. 1999), SAS PROC CALIS
(SAS Institute 1989), SEPATH (Steiger 1995) and RAMONA (Browne and
Mels 1990) are all broadly available for the analyses of various models.

In this chapter, we provide an overview of SEM and elaborate on some
conceptual and methodological details related to analysing school effectiveness
research data via this modelling approach. The term SEM is used throughout
the chapter as a generic notion to refer to various types of possible models (for
example, CFA; structural regression; path analysis; models for time-dependent
data; recursive and non-recursive models for cross-sectional, longitudinal and
multilevel data; covariance structure analysis; and latent class or mixture analysis).
For obvious space limitations, we selectively introduce just a few of the more
commonly encountered and recently popularized models. The various models
are illustrated throughout the chapter using the Mplus (Version 5; Muthén and
Muthén 2006) software program (although other programs such as Amos, EQS,
LISREL, Mx and SAS PROC CALIS can also be readily used to complete some
of the analyses). A frequent assumption made when using the SEM methodology
illustrated in this chapter is that the relationships among observed and/or latent
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variables are linear (although modelling nonlinear relationships is also becoming
increasingly popular; for details see Schumacker and Marcoulides 1998).

The chapter is organized in several sections as follows. In the first section, 
we provide an overview of the general process for defining a structural equation
model and introduce some of the basic mathematical details associated with two
commonly analysed models. In the second section we discuss model identification
issues. In the next section we elaborate on model estimation issues. This is
followed by a section on model assessment and evaluation of fit. Subsequently, the
notion of model modification is introduced, along with a discussion regarding the
potential ramifications for undergoing such strategies. In the next section, we
provide an illustration of a data analysis that involved both a CFA model and a
structural regression model. We finally expand the discussion to new modelling
techniques. Throughout the chapter we use a notational system and equations
generally considered to be consistent with the so-called Jöreskog-Keesling-Wiley
framework (Jöreskog and Sörbom 1984), although this choice is to some extent
arbitrary as specialized variants of the equations (for example, the Bentler-Weeks
model; Bentler and Weeks 1980) can produce the same results.

The definition of a structural equation model

The definition of a structural equation model begins with a simple statement of
the verbal theory that posits the hypothesized relationships among a set of
studied variables (Marcoulides 1989). In its broadest sense, a structural equation
model represents a translation of a series of hypothesized cause–effect relationships
between variables into a composite hypothesis concerning patterns of statistical
dependencies (Shipley 2000). The relationships are thereby described by para-
meters that specify the magnitude of the effect (regardless of whether the 
effect is direct or indirect) that independent variables have on dependent variables
(both of which can be either observed or latent). Hypothesized relationships are
translated into mathematical models and a researcher can use SEM to test a wide
variety of proposed models. A structural equation model is typically represented
by a path diagram, which is essentially a mathematical representation of the
proposed theoretical model in graphical form. Figure 12.1 presents some of the
most commonly used graphical notations to represent a structural equation
model.

Once a theory has been proposed, it can be tested against empirical data.
The process of proposing and testing a theoretical model is commonly referred
to as the confirmatory aspect of SEM. Although in principle researchers should
fully specify and deductively hypothesize a model prior to data collection and
testing, in practice this often may not be possible, either because a theory is
poorly formulated or because it is altogether nonexistent. Consequently, another
aspect of SEM is the exploratory mode, in which theory development can occur.
The theory development mode often involves repeated analyses on the same
data in order to explore potential relationships among either observed or latent
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variables of interest (see Model modification section below). We emphasize that
results obtained from such exploratory actions may be unique to the particular
data set, and that capitalization on chance can occur during such analyses. For
this reason, any models that result from exploratory searches must be cross-
validated before real validity can be claimed from such findings.

A related utilization of SEM is with regards to construct validation. In these
applications, researchers are mainly interested in evaluating the extent to which
particular instruments actually measure one or more latent variables they are
supposed to assess. This type of SEM use is most frequently employed when
studying the psychometric properties of a given measurement device. Latent
variables are hypothetically existing or theoretical variables (constructs) that
cannot be directly observed. Although latent variables play a central role in many
substantive areas, they often lack an explicit or precise way with which to measure
their existence. For example, in the educational effectiveness arena, researchers
study the constructs of organizational climate and culture and their potential
impact on student achievement outcomes (Heck and Marcoulides 1996;
Marcoulides and Heck 1993). Because organizational climate and culture cannot
be explicitly measured, manifestations of the constructs are instead observed by
measuring specific features of the behaviour of studied subjects in a particular
environment and/or situation. Measurement of behaviour is usually carried out
using appropriate devices and instrumentation. For example, devices such as a
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or Latent variable       

or             Observed variable     

or                                 A unidirectional path

or Error in a latent variable

or Measurement error in an observed variable

or Correlation between variables

Figure 12.1 Commonly used symbols to represent SEM models in path diagrams



scale, self-reports, inventories or questionnaires are often used to measure the
observable aspect of such latent variables. The measure or score obtained from
the device would then be specified as an indicator of the latent variable or
construct. Researchers often use a number of indicators or observed variables
to examine a latent variable. It is generally recommended that multiple indicators
for each studied latent variable be utilized so that a more psychometrically sound
picture is obtained.

Figure 12.2 presents a CFA model, which is the simplest structural equation
model that involves latent variables. A CFA model is most commonly used for
assessing the extent to which particular indicators actually measure one or more
latent variables that they are supposed to assess. The model in Figure 12.2
represents assumed relationships among two latent variables (achievement and
motivation) and their indicators. The observed variables represent six scores that
were obtained from a sample of elementary school students. The variables are
denoted by the labels x1 through x6. The correlated latent variables achievement
and motivation are denoted �1and �2 (a lower-case Greek letter xi). Each latent
variable is reflectively measured by three indicators, with each path in Figure
12.2 symbolizing the loading of the observed variable on its applicable latent
variable. There is also a residual (error) term attached to each indicator, which
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Figure 12.2 Confirmatory Factor Analysis model with two latent variables
ACH = Achievement    MOT = Motivation



is denoted by a � (a lower-case Greek letter delta) and followed by the index
of the variable to which it is attached. Each residual represents the amount of
variation in the indicator that is due to measurement error or remains unexplained
by variation in the corresponding latent variable that the indicator loads on.

The CFA model is mathematically defined as:

x = �x� + � , (1)

where �x is a matrix of factor loadings, � represents factors with a covariance or
correlation matrix 
, and � represents residuals with a covariance matrix �.

Based upon equation (1), the proposed model can also be written down as
‘model definition’ equations. These equations are for each observed variable in
terms of how it is explained in the model and can either be written separately
(one equation per variable) or in matrix form as:

x1 = �11�1 + �1

x2 = �21�1 + �2

x3 = �31�1 + �3 (2)
x4 = �42�2 + �4

x5 = �52�2 + �5

x6 = �62�2 + �6

or

where �11 to �62 denote the factor loadings in the matrix �x. The covariance
(or correlation) structure of the observed variables implied by the model can
also be shown to be as follows:

	(�) = (�x� + �) (�x� + �)� = �x
�x� + � , (4)

where 	(�) corresponds to the model-based covariance matrix, �x is as displayed
above,
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(3)



represents the covariance or correlation among the latent variables, and

refers to the covariance or correlation matrix of residuals (and since in this model
the residuals are unrelated, it is a diagonal matrix). The coefficients or parameters
to be estimated from the collected data are considered to be free, whereas those
set to some selected value (for example, in the case of some of the elements of
the �x matrix, they are set to zero because they do not measure a particular
latent variable) are considered to be fixed (we note that such coefficients can
also be considered constrained if they are set to one or more other parameters).
Another example of fixed coefficients would include the setting of the variances
of the two considered latent variables (�1 and �2) to a value of 1. This is done
in order to establish a metric for the latent variables. Since latent variables cannot
be directly measured, it is difficult to work numerically with them without first
assigning them some scale of measurement. A common approach is to standardize
these variances to a value of 1.

Figure 12.3 presents an example of a so-called structural regression model of
variables assumed to influence school outcome variables. Structural regression
models closely resemble CFA models except that, rather than the latent variables
only being interrelated, they also postulate specific explanatory relationships
among the latent variables. Structural regression models are frequently used to
test or disconfirm theories about explanatory relationships among various latent
variables under investigation, and for this reason are regularly just generically
referred to as structural equation models. We refrain from using this taxonomy
and prefer the term structural regression models, to differentiate them from other
types of models such as latent change models, multilevel models, and so on,
that may also involve explanatory relationships among various latent variables.

Another useful distinction with regards to the latent variables involved in
structural regression models is the differentiation between dependent and
independent variables. In graphical terms, dependent variables (whether latent
or whether observed) are those that receive at least one path (one-way arrow)
from another variable in the model. In mathematical terms this implies that when
a model with dependent variables is represented in a set of model definition
equations, each dependent variable appears in the left-hand side of at least one
equation. Independent variables (whether latent or observed) are those from
which a path or paths originate. In mathematical terms, no independent variable
will appear in the left-hand side of an equation, in that system of model definition
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equations. Independent variables can of course be correlated among each another.
In addition, a dependent variable may even act as an independent variable with
respect to another variable, but this does not change its dependent-variable status.
As long as there is at least one path ending at the latent variable, it is a dependent
variable no matter how many other variables in the model are explained by it.
We also note that the terms exogenous and endogenous variables are also
frequently used to describe independent and dependent variables. The terms
exogenous and endogenous are derived from the Greek words exo and endos,
for being correspondingly of external or internal origin to the system of variables
under consideration.

As mentioned above, a structural regression model can contain elements of
a CFA model, and for this reason it is usually divided into two parts, the
measurement and the structural part. The measurement part of the model is the
section that involves the CFA (the model that explains how the indicators and
latent variables are tied together). The structural part of the model details the
explanatory relationships among the latent variables. Similar to the CFA model
described in equation (1), the measurement part of a structural regression model
is mathematically defined by two specific measurement equations, one for the x
indicators associated with the exogenous latent variables (�) and one for the y
indicators of the endogenous latent variables (�):
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Figure 12.3 Example structural regression model
SC = School climate as perceived by each student
CP = Classroom processes as perceived by each student
SACH = Student achievement
SATT = Student attitudes



x = �x� + �
(5)

y = �y� + � ,

where �x and �y are matrices of factor loadings, and � and � are residuals with
respective covariance matrices �� and ��.

The structural part of the model detailing the explanatory relationships among
the latent variables is written as:

� = �� + �� + � , (6)

where B contains the regression coefficients among the � endogenous latent
variables, � represents the matrix of regression coefficients for the prediction of
the � endogenous latent variables by the � exogenous variables, and � represents
residual errors in the prediction of the � variables with a covariance matrix �.
In matrix notation, the structural part of the model depicted in Figure 12.3
would be represented as:

. (7)

Model identification

Once the definition of a model is completed, the next consideration is the
identification of the model. The definition of a model corresponds to a mathe-
matical specification of the model-based covariance matrix 	(�) that will be tested
against the covariance matrix 	 obtained from the empirical data (also sometimes
referred to as the observed covariance matrix). The amount of unique information
in the observed covariance matrix is what will determine whether a proposed
model is identified. We note that this verification procedure must be performed
before any model can be appropriately tested. The amount of unique or non-
duplicated information in the observed covariance matrix is determined as p(p
+ 1)/2, where p is the number of observed variables in the model (since the
covariance matrix is symmetric this amount includes only the diagonal elements
and those elements either above or below the main diagonal). For example, in
the above-mentioned CFA model with six indicators, this value would be equal
to 21.

The amount of unique information in the observed covariance matrix must
then be examined with regards to three different levels of identification for a
model. The most problematic is that of an ‘under-identified model’, which
occurs when the number of parameters in the model to be estimated are greater
that the amount of unique information available in the observed covariance
matrix. The parameters in such a model cannot be uniquely estimated from the
observed covariance matrix. A ‘just-identified model’ (also sometimes referred
to as a ‘saturated model’) is a model that utilizes all of the uniquely estimable
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parameters. Because there is no way that one can test or disconfirm the model,
such a model will always result in a perfect fit to the observed data. As it turns
out, the most desirable level of identification is the ‘over-identified model’. This
type of model occurs when the amount of information available in the observed
covariance matrix is greater that the number of parameters to be estimated in
the model. This ensures that there is more than one way to estimate the specified
parameters in the model. The difference between the number of nonredundant
elements of the observed covariance matrix and the number of parameters to
be estimated in a model is known as the degrees of freedom (df) of the model.
For example, in the CFA model presented in Figure 12.2 the degrees of freedom
would be equal to 8 (that is, the 21 nonredundant elements in the observed
covariance matrix minus the 13 parameters to be estimated in the model).

The topic of model identification in SEM is an extremely complicated issue
and requires several procedures to verify the status of a proposed model (for
further discussion, see Marcoulides and Hershberger 1997; Raykov and
Marcoulides 2006, 2008). One of the most frequently used identification rules
is the so-called t-rule. The t-rule, which is only a necessary condition for
identification, simply requires that the number of degrees of freedom with regards
to a proposed model be nonnegative. We emphasize, however, that the condition
of positive degrees of freedom is only a necessary but not a sufficient condition
for model identification. As it turns out, there can be situations when the degrees
of freedom for a proposed model are positive and yet some of its parameters
are unidentified. Consequently, just passing the t-rule does not guarantee
identification. Others rules that examine identification include the order condition
(also just a necessary condition) and the rank condition (which is both a necessary
and sufficient condition – for further details on identification issues, see Hayashi
and Marcoulides 2006). Model identification is in general a very complex issue
that requires careful consideration and handling.

Model estimation

It was noted above that the definition of a model corresponds to a mathematical
specification of the model-based covariance matrix 	(�) that is going to be tested
against the observed covariance matrix 	 obtained from the data. However, the
model-implied covariance matrix must first be computed from optimal estimates
of the parameters. To simplify the discussion of model estimation, consider again
the path diagram in Figure 12.2 and equation 4 in the previous section. This
proposed model has specific implications for the variances and covariances of
the involved observed and latent variables. As it turns out, these implications
can be worked out using the relations listed below (for complete details see
Raykov and Marcoulides 2006).

Let us denote the variance of a variable under consideration by using the
notation ‘Var’ and covariance between two variables by the notation ‘Cov’. For
any one variable x, the first relation is:
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Relation 1: Cov(x, x) = Var(x),

and states that the covariance of a variable with itself is that variable’s variance.
The second relation considers the covariance of two linear combinations of

variables. Suppose that x, y, z and u are four variables (for example, those
denoting the scores for each indicator in Figure 12.2) and that a, b, c and d are
four constants. Then the following relation holds:

Relation 2: Cov(ax + by, cz + du) = ac Cov(x, z) + ad Cov(x, u) + bc
Cov(y, z) + bd Cov(y, u).

Based on relations 1 and 2, one obtains the next relation:

Relation 3: Var(ax + by) = Cov(ax + by, ax + by)

= a2 Cov(x, x) + b2 Cov(y, y) + ab Cov(x, y) + ab Cov(x, y),

or simply

Var(ax + by) = a2 Var(x) + b2 Var(y) + 2ab Cov(x, y).

In the case that the variables x and y are uncorrelated (that is, Cov(x, y) = 0),
then Var(ax + by) = a2 Var(x) + b2 Var(y).

Now let us consider the model presented in Figure 12.2 using the above
relations. For example, with regards to the first two variables x1 and x2 that load
on the same latent variable �1 this leads to the following:

Cov(x1,x2) = Cov(�l�1 + �1, �2�1 + �2)

= �1�2 Cov(�1, �1) + �l Cov(�1, �2) + �2 Cov(�1, �1) 
+ Cov(�1, �2)

= �1�2 Cov(�1, �1)

= �1�2 Var(�1)

= �1�2 .

The above result is based upon the fact that (a) the covariance of the residuals
�1 and �2, and the covariance of each of them with the factor �1, are equal to
0 and (b) the variance of �1 was set to be equal to 1.

The covariance between the observed variables x1 and x4 could also similarly
be determined as follows:

Cov(x1,x4) = Cov(�l�1 + �1, �4�2 + �4)

= �1�4 Cov(�1, �2) + �1 Cov(�1, �4) + �4 Cov(�1, �2) + 
Cov(�1,�4)

= �1�4
21,

where �21 denotes the covariance between the two latent variables.
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If this process were continued for every combination of observed variables in
a given model, one would then actually obtain every element of the model-
implied matrix 	(�). For the entire model displayed in Figure 12.2, the following
reproduced symmetric covariance matrix 	(�) is obtained:

�1
2 + �1

�1�2 �2
2 + �2

�1�3 �2�3 �3
2 + �3

	(�) = �1�4�21 �2�4�21 �3�4�21 �4
2 + �4

�1�5�21 �2�5�21 �3�5�21 �4�5 �5
2 + �5

�1�6�21 �2�6�21 �3�6�2 �4�6 �5�6 �6
2 + �6.

Thus, the matrix 	(�) represents the relationships among the variables determined
according to a proposed model. As will be detailed in the next section, if the
model is correct, then the estimates obtained from the model-implied matrix
	(�) will be close to those contained in the observed sample covariance matrix.
Fortunately, researchers do not really have to worry about all these computations,
as every SEM program available has built into its memory the exact way in which
these functions of model parameters in 	(�) can be obtained. In fact, this occurs
quite automatically once a researcher has communicated to the program the
model with its parameters to be estimated.

Model assessment and evaluation of fit

The evaluation of model fit utilizes both the model-implied covariance matrix
computed from the optimal estimates of the parameters considered and the
observed covariance matrix. Evaluation of model fit is then just a function of
determining how close the two matrices are. If the difference between these
matrices is small, then one can conclude that the proposed model represents the
observed data reasonably well. If the difference is large, then the model is not
consistent with the observed data. There are at least two reasons for these
inconsistencies: (a) the proposed model may be deficient, in the sense that it is
not capable of emulating well enough the observed matrix of variable interrela-
tionships even with most favourable parameter values, or (b) the data may not
be good (that is, are deficient in some way, maybe by not validly/reliably
measuring the aspects of the studied phenomenon that are reflected in the
model). There are two types of tests that can be used to evaluate the fit of a
model, exact fit tests and approximate fit tests. The exact fit tests answer the
question dichotomously with a simple yes or no, while the approximate fit tests
determine the degree of the closeness between the observed and model-implied
matrices. Approximate fit tests have also been classified into a variety of different
categories (for example, absolute, incremental and residual based). Due to space
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limitations, we do not give detailed description of each of these categories, and
suggest that interested readers refer to a number of other available resources 
on the topic (Bollen 1989; Marcoulides and Hersberger 1997; Raykov and
Marcoulides 2006).

One way to conceptualize model fit is akin to a distance measure between
matrices. If the compared values were just a single number, then a simple subtrac-
tion of the two could suffice to evaluate the distance between them. However, 
this cannot be done directly with the two matrices 	 and 	(�). As it turns out, 
there are some meaningful ways with which to evaluate the distance between two
matrices, with the resulting distance measure still ending up being a single number.
For example, one straightforward way to obtain a single number involves taking
the sum of the squares of the differences between the corresponding elements 
of the two matrices. Other more complicated ways involve the multiplication of
these squares with some appropriately chosen weights and then taking their 
sum. In either case, the single number obtained represents a generalized measure
of the distance between two matrices considered. The bigger the number, the more
different the matrices, and the smaller the number, the more similar they are.
Because (in SEM) this number results from the comparison of the elements of
observed and model-implied covariance matrices, the generalized distance is a
function of the model parameters as well as the elements of the observed variances
and covariances. It is customary to refer to the relationship between the matrix
distance, the model parameters and observed covariance matrix as a ‘fit function’.
Since the fit function is the distance between two matrices, it is always positive or
zero (if the matrices considered are identical).

Before the particular measures for evaluating model fit are discussed in detail,
a word of caution is warranted. Even if all possible model fit indices point to
an acceptable model, one can never claim to have found the true model that
has generated the analysed data (excluding of course the cases were data were
specifically simulated according to a preset known model). SEM approaches are
mostly concerned with supporting a deductively proposed model that does not
contradict the data. That is to say, in SEM one is typically interested in retaining
the proposed model whose validity is the essence of the null hypothesis. In statist -
ical terms, this implies that one is interested in not rejecting the null hypothesis.
In general terms, this follows along with Karl Popper’s ideological process of
‘falsification’, the logical consequence of which is that no theory can ever be
proved true from data, it can only be corroborated.

It turns out that depending on how the matrix distance is defined, several fit
functions result. There are four main estimation methods and types of fit func-
tions in SEM that are typically considered: (a) unweighted least squares (ULS),
(b) maximum likelihood (ML), (c) generalized least squares (GLS), and (d)
asymptotically distribution free (also called weighted least squares – WLS). In
recent decades, research has shown that the ML method can also be employed
with minor deviations from normality (Bollen 1989; Jöreskog and Sörbom
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1993), especially when one is primarily interested in parameter estimates. With
more serious deviations from normality and with fairly large sample sizes, the
WLS method can be used.

One of the most widely used statistics for assessing the fit of a model is the
�2 (chi-squared) goodness-of-fit statistics. This statistic is an assessment of the
magnitude of the difference between the observed covariance matrix and the
model-implied matrix. The probability level that is associated with this statistic
indicates whether the difference is significant. When a significant value is found,
the difference is due to sampling error or variation. We note that in SEM,
researchers are generally interested in non-significant �2 values. Such non-
significant values indicate that there are no differences between the observed
and model-implied covariance matrices, which suggest a good fit of the model
to the data. It should be emphasized that the �2 is well known to be sensitive
to sample size issues and has a tendency to reject proposed models that are even
only marginally inconsistent with the data. Thus, it is suggested that researchers
examine a number of alternative fit criteria in order to assess the fit of a proposed
model (Hu and Bentler 1999).

Other fit criteria include the comparative fit index (CFI), Akaike’s information
criterion (AIC), and the root mean square error of approximation (RMSEA)
along with its associated confidence intervals. It is generally recognized that to
support model fit a consensus among the following is needed: a CFI value above
0.90; an AIC value closer to the value of the index for the saturated model
rather than the independence model; an RMSEA value below 0.05 and the left
endpoint of its 90 per cent confidence interval is markedly smaller than 0.05
(with this interval not excessively wide). Detailed discussions of additional fit
indices and criteria for model evaluation can be found for example in Bollen
(1989), Byrne (1998), Hu and Bentler (1999), Marcoulides and Hershberger
(1997), and Raykov and Marcoulides (2006, 2008).

Because many of these indices are mainly concerned with evaluating the fit
of the entire model, one should also consider how well various parts of the
model fit. It is quite possible that the model as a whole fits the data well, but
individual sections do not fit so well. In the event that a proposed model does
not fit the data well, such information is also useful in determining which parts
of the model may be contributing to the misfit. One of the most common ways
to determine the fit of specific sections of a proposed model is to examine the
residual matrix (Bollen 1989). The residual matrix results from the difference
between the observed covariance matrix and the model-implied matrix. A positive
residual value of an element in this difference matrix would suggest that the
model under predicts a particular covariance, whereas a negative value suggests
that the model over predicts. Although these residuals elements are informative,
some researchers (Joreskog and Sorbom 1996) believe that examining the residual
correlation matrix or the normalized residuals matrix should be preferred because
they convey a better sense of the fit of a specific part of a model.
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Model modification

The general approach in SEM is that the details of a proposed theoretical model
be specified before it is tested on data. Some theories, however, are often poorly
developed and other may require changes or adjustments. In addition, fitting a
model can be difficult, particularly when the number of variables is large. For
example, a model with 25 variables has 325 variances and covariances that must
be correctly modelled. One can envision that many models may not be perfect
and might need some modification in order to better fit the data. There are
three types of situations that can be considered with regards to model fitting
and testing. The first situation is the so-called strictly confirmative approach in
which the initial proposed model is tested against data and is either accepted or
rejected. The second situation is one in which a researcher considers competing
or alternative models. All proposed models are assessed and the best is selected
based upon which model more appropriately fits the observed data. The third
situation is the so-called model-generating approach in which a researcher
repeatedly modifies an initially proposed model until some level of fit is obtained.
We believe that the decision with regards to which approach to follow should
be based on the initial theory. A researcher who is firmly rooted in his or her
theory will elect a different approach than one who is quite tentative about the
various relationships being modelled. We note that once a researcher re-specifies
an initially proposed model after it has been ascertained to not fit the data, the
modelling approach is no longer confirmatory. Indeed, the modelling approach
has now entered an exploratory mode in which revisions or modifications to the
model occur that will most significantly improve model fit. Such modifications
can entail either adding and/or removing parameters in the model. The process
of exploration is commonly referred to as a specification search (Marcoulides
and Drezner 2001).

Most SEM programs come equipped with various test statistics to assist in
conducting a specification search. Two of the most popular test statistics are the
Lagrange multiplier test (more commonly referred to as a modification index –
MI), and the t-ratio (Joreskog and Sorbom 1996). The MI is basically used to
examine the parameters that have been fixed to zero in the model (that is, they
have not been included in the originally proposed model) and determines whether
or not the parameters should be added to the model (that is, should be freely
estimated). The MI simply indicates the amount the �2 goodness-of-fit index
would change (decrease) if a specific parameter were included in the model. We
note that the MI is also available as a multivariate test in which more than one
parameter in the model can be considered simultaneously. t-ratios can be used
to assess the significance of individual parameters in the model, whereby values
less than 2 are considered to be non-significant (that is, with p > 0.05). In all
likelihood, parameters that are found to be non-significant may be removed from
the model without causing model fit to deteriorate.

Recent research has provided some search procedures (for example, using
genetic algorithms, ant colony optimization and Tabu search) that can automate
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the process of conducting a specification search (Marcoulides et al. 1998;
Marcoulides and Drezner 2001). Nevertheless, it is important to note that results
obtained from any specification search may be unique to the particular data set,
and that capitalization on chance can occur during the search (MacCallum
1986). Even if adding a specific parameter leads to model improvement, it
should be theoretically meaningful. Similarly, even if parameter does not appear
to be important (based, for example, on its t-ratio), it should not be removed
from the model if it is considered theoretically and logically important.
Consequently, it is imperative that any model that results from a specification
search should be cross-validated before the validity of its findings can be claimed.

Some example Mplus analyses

The first and most critical step in conducting a structural equation model analysis
is communicating the model to the particular program being used. Mplus has
ten main commands that can be used to fit a wide variety of models. The main
commands also include a number of additional options, subcommands and
keywords (for complete details, see Muthén and Muthén 2006). For example,
the command file displayed in Appendix A can be used to fit the CFA model
in Figure 12.2.

The command file begins with a title. We note that each command line ends
with a semicolon, except the title line. The DATA command indicates the name
and directory location of the file containing the observed covariance matrix. The
subcommand TYPE indicates that it is a covariance matrix and NOBS provides
the sample size. The VARIABLE command is for naming the variables. The
MODEL command states each latent variable in the model with its corresponding
indicators. In order to override some default options imposed in Mplus and
obtain estimates of factor correlations and fix their variances to 1 (as opposed
to the default, which fixes at 1 the loading of the first listed indicator for each
latent variable), the subcommand F1-F2@ 1 is added. In addition, we add an
*1 after each first listed indicator, which essentially frees all factor loading for
each latent variable and simply provides a start value for initial estimation. Finally,
the OUTPUT command requests the printing of modification indices, which
might be useful to examine if the fit of the proposed model turns out not to
be satisfactory.

The file produces the selectively presented output provided in Table 12.1. It
is evident that all the fit criteria presented in Table 12.1 suggest that the model
is a good fit to the data. The chi-squared is non-significant, the CFI is above
0.90, the RMSEA index is below 0.05 and the left end-point of its 90 per cent
confidence interval includes 0. Given the good model fit, one can then proceed
to examine the individual parameter estimates provided next in Table 12.1. Each
parameter estimate is provided (first column) along with the standard error
(second column), and their corresponding statistical significance using t-values
(which are evaluated using ±1.96 for a significance level of � = 0.05). It is evident
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that each indicator is a good measure of the considered latent variables of
achievement and motivation.

The model examined above can also be modified to consider the case in which
the factor loadings on either (or both) of the latent variables are equal. In the
psychometric literature, such a model is referred to as a model with tau-equivalent
measures. A tau-equivalent indicator model suggests the indicators are assessing
the construct in the same units of measurement. To test this model, an equality
of loadings constraint can be introduced into the model. For example, to test
this for the achievement indicators in Figure 12.2, the statement, ‘F1 BY X*1
X2 X3 (1)’ can be added to the input statement in Appendix A. Running such
a model in Mplus would provide a new set of fit criteria, which can then be
examined by evaluating the chi-squared value against the previously obtained
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Table 12.1 Selective output from Mplus analysis of example CFA model

TESTS OF MODEL FIT

Chi Square Test of Model Fit
Value 9.240
Degrees of Freedom 8
P Value 0.2055

CFI/TLI
CFI 0.991
TLI 0.990

Information Criteria
Number of Free Parameters 8
Akaike (AIC) 2998.381
Bayesian (BIC) 3079.398
Sample Size Adjusted BIC 3012.778

RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.033
90 Percent C.I. 0.000 0.058
Probability RMSEA <= .05 0.859

MODEL RESULTS
Estimates S.E. Est./S.E.

ACHI BY
X1 0.990 0.060 16.500
X2 0.962 0.063 14.630
X3 0.985 0.063 15.732

MOT BY
X4 0.980 0.050 19.600
X5 0.925 0.060 15.466
X6 0.987 0.066 15.015

ACHI WITH
MOT 44.557 6.633 6.717



value without the constraints. In this case, the result of introducing the restriction
in the original model results in a chi-squared value of 11.28 with df = 10, which
compared to the original value of 9.24 with df = 8 provides a difference of 2.04
for df = 2, and is non-significant (that is, the critical value of the chi-squared
with 2 degrees of freedom is 5.99 at the 0.05 significance level). Thus, we
conclude that the imposed achievement factor loading identity is plausible, and
hence that the achievement measures are tau-equivalent.

The model presented in Figure 12.3 represents a simple structural regression
model in which school outcomes are predicted. The two latent variables of ‘school
climate’ and ‘classroom processes’ (both as perceived by each student) are used
as predictors of the latent variables of ‘student attitudes’ and ‘student achieve-
ment’. The main difference in this file (relative to the Mplus command file for
the CFA model examined previously) is that now explanatory predictions between
latent variables are declared using the keyword ‘ON’ – see the command file
provided in Appendix B.

Using the command file provided in Appendix B produces the output
presented in Table 12.2. All of the fit criteria obtained indicate that the proposed
model is a plausible means of data description and explanation. Given the good
model fit one can then examine in greater detail the obtained individual parameter
estimates. For example, it is quite clear that both school climate and classroom
processes appear to be good predictors of student achievement and student
attitudes. Beyond this, it would appear that the student attitude latent variable
also functions as a good predictor of student achievement.

Statistical tests dealing with hypotheses about potential group differences are
also quite common in SEM and are referred to as tests of model invariance
(Heck and Marcoulides 1989; Marcoulides and Heck 1993). The terms
‘interaction modelling’ or ‘multi-sampling’ are also sometimes used to refer to
such comparisons with regards to similarities of proposed models across different
samples or subgroups of samples (Schumacker and Marcoulides 1998). Suppose
for example that data have been obtained from G groups and that we are
interested in studying the CFA model defined in equation (4) across these
groups. From equation (4), it follows that the implied covariance matrix in each
considered group is

	(�g) = �g
g�g� + � g. (8)

In general terms, evaluating this model across multiple samples consists of
the following steps. The analysis first begins by fitting a model to the data for
each sample considered separately, with none of the parameters constrained to
be equal across groups. This unconstrained model serves as the baseline model.
Subsequently, in a stepwise fashion, more stringent constraints are placed on
the model by specifying the parameters of interest to be constrained across
groups. The model is then examined using a chi-squared (�2) difference test
between the less restrictive and more restrictive model to determine whether
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Table 12.2 Selective output from Mplus analysis of example structural regression model

TESTS OF MODEL FIT

Chi Square Test of Model Fit
Value 32.889
Degrees of Freedom 36
P Value 0.4062

CFI/TLI
CFI 0.994
TLI 0.992

Information Criteria
Number of Free Parameters 36

Akaike (AIC) 22998.381
Bayesian (BIC) 23079.398
Sample Size Adjusted BIC 23012.778

RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.033
90 Percent C.I. 0.000 0.058
Probability RMSEA <= .05 0.859

MODEL RESULTS
Estimates S.E. Est./S.E.

SC BY
X1 1.000 0.000 0.000
X2 0.926 0.063 14.630
X3 0.985 0.063 15.732
X4 0.977 0.063 15.507

CP BY
X5 1.000 0.000  0.000
X6 0.987 0.066  15.015

SACH BY
Y1 1.000 0.000  0.000
Y2 0.972 0.044 22.090

SATT BY
Y1 1.000 0.000 0.000
Y2 0.962 0.053  18.150
Y3 0.985 0.053 18.584

SC WITH
CP 44.557 6.633 6.717

SACH ON
SC 0.992 0.146 6.776
CP 0.674 0.180  3.747
SATT 0.758 0.100 7.617

SATT ON
SC 0.980 0.080 12.030 
CP 0.96 0.020 43.400



the model and the individual parameter estimates (for example, factor loadings,
factor inter-correlations, error variance, structural relations) are invariant across
the samples. A significant difference in �2 represents a deterioration of the model
and the null hypothesis that the parameters are equal is rejected. A non-significant
�2 difference is consistent with model invariance; that is, the parameters examined
are equal across groups.

More advanced SEM models

A latent change model

A CFA model can also be used to model change over time. Such a CFA model
entails having the latent variables interpreted as chronometric variables
representing individual differences over time. Traditionally two different codings
of time can be used, the so-called level and shape (LS) model and the intercept
and slope (IS) model. The LS model was first described by McArdle (1988) and
is considered to have a number of advantages over the IS model (Raykov and
Marcoulides 2006). In particular, because the IS model assumes that the change
trajectory being studied occurs in a specific fashion (that is, is linear, quadratic,
cubic, and so on), the actual process may be quite difficult to model precisely
utilizing any specific trajectory shape. For this reason, the less restrictive (in terms
of the change trajectory) LS model is preferable because it would be expected
to fit the data better.

As an example of a longitudinal study, assume that a series of seven repeated
ordered waves of measurements on a measure of student achievement is
represented as Yit (where the index i corresponds to each observed individual
in the study and t corresponds to each obtained measurement). The following
equation can be used to describe these repeated measurements:

Yit = �yi + �yi�t + �it , (9)

where �yi is the initial measurement obtained at time 1, �yi is the shape of the
change trajectory, �t corresponds to the measured time points, and �it to the
model residual for each individual. Because �yi and �yi are random variables, they
must be represented by a group of mean values for the intercept (��y) and slope
(��y), plus the component of individual intercept variation (��yi) and slope
variation (��yi). In equation form these would be:

�yi = ��y + ��yi and �yi = ��y + ��yi . (10)

Alternatively, in general matrix form the model defined by the above equations
would be expressed as below, which is essentially similar to equation (5):

y = �y� + � (11)
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or simply as

.

As indicated previously, a number of different approaches to the coding of
time (that is, the � matrix) can be utilized to examine this model. Using the
LS approach, the loadings on the first factor (called the ‘level factor’) are also
set to a value of 1, but the component of time is coded by fixing the loadings
on the second factor (called the ‘shape factor’) as follows (where * corresponds
to a freely estimated loading):

.

By fixing the loading of the first and last assessment occasion on the second
factor to a value of 0 and 1, respectively, one ensures that this factor is interpreted
as a change factor (regardless of the shape of the encountered trajectory, be it
linear, quadratic, cubic, and so on). Freeing the loadings of the remaining time
periods on the same factor captures the change that occurs between the first
and each of these later measurement occasions. In other words, specifying 
the change trajectory in this manner ensures that the freed loadings reflect the
cumulative proportion of total change between two time points relative to the
total change occurring from the first to the last time point, and the correlation
between the level and shape factors reflects their degree of overlap. Thus, this
particular manner of specifying the level and shape factors tends to focus on the
change over the length of the longitudinal process measured.

As an example analysis, consider the longitudinal model depicted in Figure
12.4. The data are from a study of 130 individuals that participated in the
Fullerton Longitudinal Study. To evaluate model fit, the overall �2 goodness-
of-fit test, the CFI and the RMSEA (along with its associated confidence intervals)
are once again used. The proposed LS model using equation (6) provided the
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following fit criteria: �2 = 6.55, p = 0.45; CFI = 0.99; and RMSEA = 0.02 (0.0;
0.06). An examination of the fit criteria based upon the previously outlined
guidelines indicates that the proposed longitudinal model fit the data well. The
Mplus modelling statements for examining the proposed model in Figure 12.4
are provided in Appendix C (where ‘I’ denotes level and ‘S’ denotes shape).

Based upon the good model-to-data fit results, we can then readily proceed
to interpret the parameters to address the substantive focus of the study with
respect to the change trajectories. First, we observed that the mean value of the
shape factor is negative and significantly different from zero (��y = –22.71, 
t-value = –8.63, p < 0.05), indicating that there is a steady decline in scores
over time from the initial measured mean value on the level factor (��y = 89.00,
t-value = 61.00, p < 0.05). Indeed, looking specifically at the estimated coefficients
of the shape factor loadings of 0, 0.22, 0.47, 0.66, 0.70, 0.81, 1 that were
obtained, it is evident that there is a decline in the achievement scores over time.
The decline of the motivation scores is approximately 20 per cent each year for
the first three measured time periods and appears to start levelling off at the
remaining time periods. The specific average decline at any time point can be
easily calculated. For example, the specific decline in achievement at time 2 is
computed by taking the value of the shape factor loading (0.22) at that age and
multiplying it by the mean value of the shape factor (–22.71) to produce –4.996.
This value is then added to the mean value of the level factor (89.00) to provide
the average achievement at this time period of 84.004. We also note that
significant variance exists in both the level (s2 = 159.16, t-value = 5.308, p <
0.05) and the shape factors (s2 = 505.67, t-value = 5.257, p < 0.05), reflecting
variability in the average initial and change scores of individuals over time.
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A latent class model

Latent Class Analysis also operates much as a CFA model (in a conceptual
manner similar to Exploratory Factor Analysis and cluster analysis). When running
CFA models, it is often assumed that the observed scores obtained from the
considered variables correspond to the distributional characteristics of a single
sample or that group membership can be readily defined based on an observable
variable (for example, male and female, or experimental and control groups). In
some cases, however, group membership may not be known beforehand or is
not observable. In such cases, the groups can be considered latent – sometimes
also called mixtures. As an example of a Latent Class Analysis, consider the data
distribution for a single continuous observed variable X with a mean value �.
Now consider the case in which the data consist of two different groups or
classes of individuals but that the group membership is not directly observed.
The observed data distribution of X actually corresponds to the mixture of the
data distributions of the two latent classes c = 1 and c = 2, each with different
means (�1 and �2). In other words, the two separate distributions are not
observed but only their mixture is observed. In such a case, a Latent Class Analysis
can be used to determine the presence and nature of the mixture and its associated
parameter estimates. The basic assumption of such a latent class model is that
the population from which the sample was taken consists of k latent classes of
unknown size (postulated to be mutually exclusive and collectively exhaustive).
For example, a proposed CFA model for k = 1, . . . , K latent classes can be
specified similarly to equation (4) as follows:

	(�) = �k
k�k� + �k. (13)

Consider the CFA model examined previously with the six observed variables
and two latent variables measuring achievement and motivation. To evaluate
model fit in a Latent Class Analysis another index, called the Bayesian Information
Criterion (BIC) index (Schwartz 1978), is generally used because it provides an
ideal way to examine the relative fit of any proposed latent class model against
the model for just one class (that is, the case for which the considered sample
is homogeneous with respect to the model considered). The BIC values for the
various alternative or competing models are compared and the model with the
smaller value is considered the preferred model. Although some researchers also
suggest the use of the likelihood ratio goodness-of-fit test to evaluate model fit,
recent research has suggested that such an approach only works well in cases
where there are not large numbers of sparse cells (Nylund et al. 2007).

The following illustrative results would be obtained when fitting the proposed
CFA model to data using Mplus (Muthén and Muthén 2006). Model fit criteria
based on the BIC values are examined for one-, two-, three- and four-class models
and indicate that fitting a three-class model consistently results in the best BIC
fit values. The proposed three-class measurement model fit criterion is BIC =
3,343.885, compared to model fit criteria of BIC = 3,368.539, BIC = 3,361.895
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and BIC = 3,392.692 for the one-, two- and four-class models, respectively.
Additional information obtained would include the information provided in
Table 12.3, which provides evidence with regards to the quality of the classifica-
tion, using average posterior probabilities for the three-class model considered.
The fit of the model to the data suggests that three latent classes seem to classify
individuals very nicely (in terms of percentage accuracy) into exclusive categories
optimally based on the CFA model proposed. If desired, membership in these
latent classes can be further investigated according to various individual charac-
teristics such as gender or ethnicity. In addition, various other types of mixture
models can be considered, such as latent growth mixture models, multilevel
growth mixture models, latent transition analysis models, Markov chain models
and latent variable hybrid models.

Concluding comments: application of SEM 
to EER

In this chapter, the background and some examples of basic SEM models were
presented. These models are essential for running effectiveness studies, especially
since they are able to test the construct validity of instruments used to measure
effectiveness factors operating at different levels. More specifically, Example 1
refers to the use of a CFA model with two latent variables that are expected to
be related to each other. In various effectiveness studies such models are used
to generate latent variables, which are then treated as predictors of student
achievement. For example, a CFA model can be used in a study testing the
extent to which the five dimensions included in the dynamic model (Creemers
and Kyriakides 2008) can help us measure a school-level factor such as school
policy on partnership or teacher collaboration. Data emerging from a question-
naire administered to teachers can be analysed by using a CFA model in order
to find out whether a first-order five-factor model fits the data. This model can
also be compared with a more parsimonious model (for example, a single first-
order factor model) in order to test the proposed measurement framework.
Similarly, the regression model presented in the second example can be found
useful by researchers who are searching for relations between factors operating
at the same level (see also Chapter 10). Furthermore, researchers within the field
of EER who undertake longitudinal studies can make use of more advanced
SEM models such as the latent change/growth model, and the advantages of
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Table 12.3 Average posterior probabilities from the three class model

Class 1 2 3

1 0.955 0.000 0.045
2 0.048 0.952 0.000
3 0.030 0.000 0.970



longitudinal studies and the importance of using latent change models are also
discussed in Chapter 5. Finally, this chapter focused on single-level SEM models,
but based on the same assumptions, a number of researchers have developed
methods to apply SEM on multilevel data (Goldstein and McDonald 1988;
Muthén 1989; Muthén and Satorra 1989). Hox (2002) gives an overview of
the different approaches to multilevel SEM. The basic idea for this technique is
the decomposition of the individual scores in an individual component (the
deviation of the individual score from the group’s mean score) and a group
component (the disaggregated group mean score) (Heck 2001). This decom-
position is used to calculate two independent covariance matrices: a between-
and a within-matrix. To test a multilevel SEM model, both matrices are used.
Different authors describe this technique more extensively (Heck 2001; Heck
and Thomas 2000; Hox 2002; Muthén 1994; Stapleton 2006). Multilevel SEM
models can especially help EER to develop and test its theoretical models further
since the current EER theoretical models refer both to direct and indirect effects
of school-level factors on student learning outcomes. Some studies employing
this technique have been undertaken (de Maeyer et al. 2007; Palardy 2008) and
their results are promising for the further theoretical development of EER.
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Meta-analyses of
effectiveness studies

Leonidas Kyriakides and Bert P.M. Creemers
University of Cyprus and University of Groningen (respectively)

The foundation of science is the accumulation of knowledge from the results of
many studies. There are two steps to the accumulation of knowledge: (a) the
analysis of results across relevant studies to establish the ‘facts’ – that is, the extent
of consistency in results and the strength of evidence – and (b) the formation of
theories to organize the consistent findings into a coherent and useful form to
enhance understanding. Meta-analysis is concerned with the first step – that is, with
the resolution of the basic ‘facts’ from a set of studies that all bear on the same
relationship of interest. Meta-analysis is rapidly increasing in importance in the
behavioural and social sciences because it offers a way to make sense of findings
from a range of different studies conducted in different contexts. The increasing
importance of meta-analysis is discussed in the first part of this chapter and special
emphasis is given to using meta-analyses for testing the validity of theoretical 
models in EER. The second and third parts of this chapter are concerned with some
practical suggestions on how to conduct a meta-analysis. Specifically, several
different methods that can be used in order to select and classify studies are outlined
in the second part of the chapter, whereas the use of multilevel modelling
techniques to conduct meta-analyses in the field of effectiveness is discussed in the
third part. The use of multilevel modelling techniques to conduct a meta-analysis
is described in more detail by referring both to the principles underlying the use
of this approach as well as to practical decisions that have to be taken in order to
apply this approach. In the fourth part of this chapter, an example of a meta-analysis
conducted in order to test the validity of the dynamic model of EER is given. The
fact that this meta-analysis was guided by a specific theoretical framework enables
us to see how researchers can deal with one of the main issues concerning coding
the studies, taken into account for a meta-analysis, and at the same time contribute
to the development of the theoretical framework of EER. For further discussion
and another example, see Chapter 11 on multilevel modelling.

The importance of using meta-analyses

The goal in any science is the production of cumulative knowledge. Ultimately,
this means the development and testing of theories that explain the phenomena
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that are the focus of the scientific area in question. One example is theories that
identify the school factors associated with student achievement. Unless we can
precisely calibrate relationships among variables (for example, leadership style or
school climate and student achievement), we do not have the raw materials out
of which to construct theories. There is nothing consistent for a theory to explain.
For example, if the relationship between instructional leadership and student
achievement varies capriciously across different studies from a strong positive to a
strong negative correlation and everything between, we cannot begin to construct
a theory of how leadership might affect achievement. This implies that there is a
need for researchers in any field to conduct reviews of research and in particular
meta-analyses (which are a more rigorous means of review) to examine and
integrate the findings across studies and reveal the simpler patterns of relationships
that underlie research literatures, thus providing a more robust basis for theory
development. Moreover, meta-analysis can correct for the distorting effects of
sampling error, measurement error and other artefacts that can produce the
illusion of conflicting findings and obscure ‘real’ underlying patterns (Hunter and
Schmidt 2004) by means of the calculation of average effect sizes for relationships.

It is important to note here that an effect size is a measure of the strength of
the relationship between two variables in a statistical population, or a sample-
based estimate of that quantity. Sample-based effect sizes are distinguished 
from test statistics used in hypothesis testing, in that they estimate the strength
of an apparent relationship, rather than assigning a significance level reflecting
whether the relationship could be due to chance. In scientific experiments and
observational studies, it is often useful to know not only whether a relationship
is statistically significant, but also the size of the observed relationship. In practical
situations, effect sizes are helpful for making decisions, since a highly significant
relationship may be uninteresting if its effect size is very small. For this reason,
measures of effect size not only play an important role in statistical power analyses
but also in meta-analyses that summarize findings from a specific area of research.
More specifically, the effect size is a standardized measure of the effect of one
variable on a dependent variable. For example, one can search for the effect of
one intervention (treatment) on student outcomes. In this example, the effect
size represents the change (measured in standard deviations) in an average
student’s outcome that can be expected if that student is given the treatment.
Because effect sizes are standardized, they can be compared across studies. It is
finally important to note that ‘Cohen’s d’ is an effect size used to indicate the
standardized difference between two means and is used, for example, to
accompany t-test and ANOVA results. Cohen’s d is widely used in meta-analysis
and is defined as the difference between two means divided by a pooled standard
deviation for the data. The pooled standard deviation is defined as follows:

with Sk as the standard deviation for group k, for k = 1, 2.
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Before meta-analysis, the usual way in which scientists made sense of research
literature was by use of the narrative subjective review of literature. In many
research literatures, there were not only conflicting findings but also large
numbers of studies. This combination made the standard narrative subjective
review a nearly impossible task. The answer, as developed in many narrative
reviews, was what came to be called the ‘myth of the perfect study’. Reviewers
convinced themselves that most of the available studies were methodologically
deficient and should not be considered in the review. These judgements of
methodological deficiency were often based on idiosyncratic ideas. For example,
textbook authors would often pick out what they considered to be the two or
three ‘best’ studies and then base textbook conclusions on just those studies,
discarding the vast bulk of the information in the literature.

In this context, the myth of the perfect study emerged. However, in reality,
there are no perfect studies. All studies are conducted in a specific context (in
both place and in time) and contain measurement errors in all measures used.
Independent of measurement error, no measure in a study will have perfect
construct validity (Cronbach 1990). Furthermore, there are typically other
artefacts that can also distort study findings. Even if a hypothetical study suffered
from none of these distortions, it would still contain sampling error, for example.
Therefore, it can be claimed that no single study (or even a small number of
studies) can provide an optimal basis for scientific conclusions about cumulative
knowledge.

However, this does not mean that since there is no perfect study that all 
studies should be included in a meta-analysis. Only those studies that meet some
basic quality criteria, such as the provision of information regarding the validity
of the study, should be taken into account for a meta-analysis. Nevertheless, we
do not support the idea that only studies using specific approaches, such as true
experimental approaches, should be selected or given more emphasis than survey
studies, as proposed by those who advocate the best-evidence approach (Slavin
1986, 1987; Chapter 6 in this volume), since reliance on ‘perfect studies’ does not
provide a solution to researchers when they are confronted with the problem of
conflicting research findings. On the contrary, characteristics of the studies used
to conduct the meta-analysis (for example, research design employed, country-
context, statistical techniques employed) can be taken into account, and
researchers may try to find out the extent to which these characteristics can predict
variation in observed effect sizes. The use of multilevel modelling techniques to
provide answers to this question is recommended by this chapter. A brief
description of this technique is also provided below.

The impact of meta-analysis on accumulation
of knowledge

Looking at the history of the use of meta-analysis in the social sciences, one
could observe that starting in the late 1970s, new methods of combining findings
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across studies on the same subject were developed. These methods were referred
to collectively as meta-analysis, a term coined by Glass (1976). Applications of
meta-analysis to accumulated research literatures (Schmidt and Hunter 1977)
showed that research findings were not nearly as conflicting as had been previously
thought (Cronbach 1975; Meehl 1978) and that useful and sound general
conclusions could in fact be drawn from the systematic study of bodies of existing
research. In fact, meta-analysis has even produced evidence that the cumulative
weight of research findings in the behavioural sciences is typically as great as
that in the physical sciences (Hedges 1987). The major lesson drawn during the
last two decades from the attempts of researchers to conduct meta-analysis in
different subject areas of social sciences is that many discoveries and advances
in cumulative knowledge are being made not by those who do primary research
studies but by those who use meta-analysis to discover the latent meaning of
existing research literatures (Hunter and Schmidt 2004). It was also found that
the meta-analytic process of cleaning up and making sense of research literatures
not only reveals cumulative knowledge but also provides clearer directions about
the remaining research needs, and so guides future research.

Reasons for conducting meta-analyses

Usually meta-analyses are conducted for two main reasons. First, researchers are
interested in finding out at what certain stage is the cumulative knowledge in a
field, and the main aim is to provide an insight into the state of the art that can
be used by both researchers and practitioners. Second, researchers may also be
interested in using the findings of a meta-analysis as an argument or starting
point for building a theory or for designing further studies.

In the case of EER, a large number of reviews were conducted in the 1990s,
but most of them did not follow the quantitative approach to estimate the average
effect sizes of school factors on student achievement. As mentioned above, their
main purpose was to provide the research community and policymakers with 
an indication of the state of the art of the field (Creemers and Reezigt 1996;
Levine and Lezotte 1990; Sammons et al. 1995; Teddlie and Reynolds 2000).
On the other hand, Scheerens and Bosker (1997) conducted for the first time
a quantitative synthesis of effectiveness studies in order to determine the estimated
effect size of variables mentioned in the school effectiveness literature on student
outcomes. By applying this approach to the field of EER, a significant contribu-
tion to the knowledge base was made. Following this meta-analysis, a number
of quantitative syntheses of studies were conducted that focused on either the
impact of specific factors or on a group of factors operating at either the teacher
or the school level (Creemers and Kyriakides 2008; Scheerens et al. 2005; Seidel
and Shavelson 2007). Interest in policy and practice has driven the inclusion of
specific educational factors such as leadership (Robinson et al. 2008; Witziers
et al. 2003), parental involvement (Fan and Chen 2001; Jeynes 2007; Senechal
and Young 2008), homework (Cooper et al. 2006) and class size (Goldstein
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et al. 2000) in a number of meta-analyses. However, these meta-analyses were
not conclusive but resulted in diverse answers with respect to the impact of the
factor under study on student outcome measures. For example, three meta-
analyses revealed that leadership has only a very weak direct impact on student
outcomes (Creemers and Kyriakides 2008; Scheerens et al. 2005; Witziers et al.
2003), whereas another recent meta-analysis claimed to find a very strong impact
(Robinson et al. 2008). One of the reasons behind these discrepancies may be
the use of different classification schemes and, especially, the fact that the last
study lacks a clear theoretical framework for classifying variables included in the
studies involved in the meta-analysis. Another possible reason concerns differences
in the methods used to analyse the data that emerged from the studies that were
included, especially since multilevel modelling techniques were used in all three
earlier studies, where no support for the impact of leadership has been provided.
By contrast, in the more recent meta-analysis study, not enough information
was given about the processes that were used to estimate effect sizes. In this
context, the next two parts of this chapter are concerned with the process of
selecting studies and coding variables involved and with the methods that can
be used to estimate effect sizes.

Conducting a meta-analysis: collecting and
coding studies

Because of the expansion in interest in conducting meta-analyses over the last
fifteen years, no single book can cover all aspects of meta-analysis. Therefore,
this section does not cover all issues associated with the processes of locating,
selecting, evaluating and coding studies (for further details on these aspects see
Hall and Rosenthal 1995; Schmidt and Hunter 1998; Stock 1994). The material
in this section is selective rather than comprehensive.

Selection of studies

Cooper (1998) illustrates how to conduct a thorough literature search, including
through the use of conference papers, personal journals, libraries, electronic
journals, research report reference lists, research bibliographies and reference
databases (for example, using ERIC, ERA, PsycInfo, Social Science Citation
Index). The limitations of computer-based literature searches are also acknowl-
edged, and methods for assessing the adequacy and the completeness of a
literature search have also been developed (Reed and Baxter 1994; Rosenthal
1994; Rothstein 2003). However, a main issue that has to be considered in the
process of selecting studies refers to how one can deal with studies that have
methodological weaknesses. Many reviewers wish to eliminate from their analyses
studies that they perceive as having methodological inadequacies (Slavin 1986).
However, this may not be as desirable as it might seem. The assertion of
‘methodological inadequacy’ always depends on theoretical assumptions about
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what might be methodologically ‘appropriate’ in a study. One could claim that
these assumptions may not be well founded themselves, and it should at least
be acknowledged that these assumptions are rarely tested in their own right.
Those who ‘believe’ these methodological assumptions usually feel no need to
test them. It should also be acknowledged that no research study can be tested
against all possible counter-hypotheses, and this means that no study can be
without any ‘methodological inadequacy’.

However, methodological inadequacies do not always cause biased findings, and
prior to the analysis of the full set of studies on the topic, it is difficult to identify
when methodological inadequacies have caused biased findings and when they have
not. Some reviewers are inclined to use the simple strategy of elim inating all studies
believed to have methodological inadequacies. However, because most studies have
some weaknesses, their reviews refer to inferences drawn from a very small number
of studies deemed to be methodologically robust. In this chapter, it is argued that
the hypothesis of methodological inade quacy should be tested in two ways. First,
one should determine if the variation across all studies can be accounted for by
sampling error and other artefacts, such as differences in reliability. If the variation
is due to these artefacts, one could argue that there is no variance due to method -
ological inadequacy. Second, if there is substantial variation across studies, then
theoretically plausible mod erator variables should be identified. If these moderator
variables do not explain the variance in the reported effect sizes, then method -
ological inadequacies may be present. If this is the case, the researchers should rate
the internal and external validity of each study or code the characteristics of the
studies that might produce inadequacy and identify the extent to which these
characteristics of the studies included in the meta-analysis explain variation in the
reported effect sizes.

Cooper (1998: 81–4) pointed out another reason for not excluding studies
considered as methodologically weak. To make such decisions, evaluators must
judge and rate each study on methodological quality. However, Cooper claimed
that research on inter-rater agreement for judgements of research quality revealed
that the average correlation coefficient between experienced evaluators is not
higher than 0.50. This finding reveals that there is a substantial amount of
subjectivity in assessments of methodological quality.

Obviously, the question of methodological weaknesses addressed above should
be separated from the question of relevant and irrelevant studies. Relevant studies
are those that search for the existence of a relationship between variables that
are the focus of the meta-analysis. For example, if one is interested in the impact
of teacher behaviour in the classroom upon student achievement, studies that
report relationships between teacher behaviour in the classroom and parents’
views about the effectiveness of teachers should be excluded because they are
not looking at the impact of teacher behaviour in the classroom on student
learning outcomes. Obviously, if enough such studies are encountered, researchers
may also consider the possibility of conducting a separate meta-analysis that will
be concerned with the impact of teacher behaviour in the classroom upon the
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perceived effectiveness of teachers by parents. Measures of different constructs
of the dependent variable that is the focus of our meta-analysis should not be
combined in the same meta-analysis, but if the researchers like to draw attention
to the use of different constructs then different meta-analyses for each construct
should be conducted and their results could be compared.

In general, meta-analyses that do not mix different independent variables are
also likely to be more informative. However, the issue raised here has no simple
answer. More specifically, one should bear in mind that measures that assess
different constructs from the same perspective (for example, using frameworks
arising from the trait theory to measure leadership style) may also assess the same
construct from the perspective of another theory (for example, using frameworks
arising from the situational theory to measure leadership). Furthermore, the
second theory may represent an advantage in understanding the functioning of 
the independent variable. In this context, we draw attention to the results of the
example meta-analysis given below, which uses different dependent variables by
looking at studies that investigate the impact of school factors on different
outcomes of schooling such as cognitive, psychomotor and affective disorders. This
example did not reveal substantial variations in the impact of most factors upon
student achievement when different outcomes were taken into account (Kyriakides
et al. 2008). Therefore, the question of how varied the independent and
dependent variable measures that are included in a meta-analysis should be is more
complex than it appears at first glance. The answer depends on the specific
hypotheses, theories and aims of the researcher(s) who conduct the meta-analysis.
Glass et al. (1981) argued that there is nothing wrong with mixing apples and
oranges, if the focus of the research interest is fruit. However, they also go beyond
even the theory-based rationale supported here in arguing that it may be
appropriate to include in the same meta-analysis independent and dependent
variables that appear to be different constructs. Specifically, it is argued that such
broad meta-analysis might be useful in summarizing the literature in broad strokes.
However, here we argue, at least initially, meta-analyses in a given area within EER
should be focused enough to correspond to the major constructs recognized by
the researchers in this area. Then, as focused meta-analyses help us develop our
understanding, we can move to conduct meta-analyses that may have a broader
scope, especially if that is shown to be theoretically appropriate.

Coding studies

The process of coding data from primary studies is usually complex, tedious and
time-consuming. It is, however, one of the most critical components of meta-
analysis and it is essential that it be done appropriately and accurately. Stock
(1994) and Orwin (1994) provided detailed discussions of the many considera-
tions, decisions and subtasks that can be involved in coding information from
each empirical study. First, the complexity of the coding needed depends on
the hypotheses and purposes underlying the meta-analysis. For example, if the
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studies included in a meta-analysis differ on many dimensions and the meta-
analysis focuses on several different relationships, the coding task will be quite
complex. Similarly, the coding task will be complex if there is reason to believe
that many particular study characteristics may affect its results. On the other
hand, coding can be relatively easy in research literature where studies are quite
similar in terms of the methods adopted, their population(s) and the constructs
used to measure independent and dependent variables. In such a case, relatively
few study characteristics may need to be coded, greatly reducing the scope of
the coding task. This distinction bears on the issue of coder agreement. In this
latter example, there is some evidence supporting the conclusion that inter-coder
agreement and inter-coder reliability can be extremely high (Whetzel and
McDaniel 1988). Moreover there is also some evidence supporting the view that
even in more complex coding tasks (such as in our first example), the coder
agreement and reliability have still commonly been quite good (Cooper 1998).
Nevertheless, these arguements refer to the coding of more objective-specific
aspects of studies rather than on judgments of the overall methodological quality
of studies included in a meta-analysis. Finally, it is important to note that
although readers can have access to different code schemes that have been used
for conducting different types of meta-analyses (Hunter and Schmidt 2004),
there is no illustrative coding scheme that can be taken as a perfect example,
especially since each coding scheme should be tailored to the purposes of each
specific meta-analysis.

Methods of meta-analysis: the use of
multilevel modelling techniques

Although different methods are often used to conduct a quantitative synthesis
of studies, the use of multilevel modelling techniques is recommended in this
book especially since it can help explain variation in the reported effect sizes of
different factors. By identifying sources that explain variation in the reported
effect sizes of an effectiveness factor (moderators), the extent to which this factor
can be considered generic is identified. For example, if variation in the reported
effect sizes of a factor cannot be explained by the fact that the studies that are
included in a meta-analysis were conducted in different countries, we could argue
that this factor is more generic and its impact on student achievement can be
viewed as independent of the country context. As a consequence, one could also
claim that the results are likely to be relevant for countries that are not represented
in the original studies. On the other hand, we could identify factors that have
differential effects. For example, if variation in the reported effect sizes of a factor
can be explained by the age group of students involved in the original studies,
the factor is treated as more differential, meaning that it is seen as more important
for specific age groups of students or phases of education. This approach is also
in line with the multilevel structure of the theoretical models used to describe
educational effectiveness (Creemers 1994; Scheerens 1992; Stringfield and Slavin
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1992) and is thereby familiar to researchers within EER, and it can also give
more efficient estimates of overall effect sizes and their standard errors.

Therefore, the approach described below is based on the assumption that it
is important to identify the impact that the characteristics of each study may
have on effect sizes. By providing answers to these research questions, we get a
clear insight into the potential impact of independent variables upon the
dependent variable of interest – for example, the extent to which the impact of
specific teacher effectiveness factors depends on the criteria used for measuring
effectiveness. If specific characteristics of the studies (such as the country where
the study was conducted, the age group of students involved or the type of
school) explain variation in the reported effect sizes, the theories might further
be developed by acknowledging the impact of contextual factors.

The multilevel model can be applied to analyse the observed effects from
studies and the sources of variance among the findings that emerge from different
studies investigating the effect of a specific factor on a dependent variable such
as student achievement (Raudenbush and Bryk 1985). Specifically, studies that
are found to investigate the effect of a factor on student achievement can be
considered to be a sample from the population of studies investigating the
relationship between this factor and student achievement (where schools are
nested within each study). Each study can then be viewed as an independent
replication. This concept could be used, but it does not solve the problem of
multiple results from one study, such as when effects are reported for more than
one outcome of schooling (for example, mathematics and language achievement
or mathematics and development of positive attitudes towards the school) while
using the same sample of schools and students. To deal with this problem, the
two-level model for meta-analysis can be expanded to a three-level model. As a
consequence, the highest level of the studies is then referred to as the ‘across-
replication’ level, and the multiple results within a study as the ‘within-replication’
level. The main advantage of this statistical meta-analysis is that the information
from each study is weighted by the reliability of the information, in this case
the sample size. Moreover, the multilevel model helps us identify factors that
predict variation in observed effect sizes of each of the main school-level factors
on student achievement that emerge from this synthesis of school effectiveness
studies. Therefore, differences in reported effect sizes are modelled as a function
of study characteristics, such as differences in the type of outcomes used to
measure student achievement, the level of education over which the study was
conducted, and the nature of the study. Some further information about the
statistical modelling technique is given below.

It is first important to indicate that the multilevel model for the meta-analysis
(Raudenbush and Bryk 1985; Raudenbush 1994), starting with the ‘within-
replications’ model, is given by the following equation:

drs = �rs + ers .
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The above equation implies that the effect size d in replication r in study s (drs)
is an estimate of the population parameter (�rs) and the associated sampling error
(ers). The sampling error is attributed to the fact that in each replication, only
a sample of schools is studied. As far as the between-replications model is
concerned, the following equation is used:

�rs = �s + urs .

In the above model, it is acknowledged that the true replication effect size is a
function of the effect size in study s and sampling error urs. Finally, the between-
studies model is formulated as follows:

�s = �0 + vs .

The above formula basically implies that the true unknown effect size as estimated
in study s (�s) is a function of the effect size across studies (�0) with random
sampling error vs, which is attributed to the fact that the studies are sampled
from a population of studies.

To assess the effects of particular study characteristics, we extend the between-
replication model to one that takes into account the effect of explanatory variables
that refer to the special characteristics of each study. Since the explanatory
variables are likely to be grouping variables, they can be entered into the model
as dummies, with one of the groups as baseline. For example, within EER it is
possible to classify studies into groups according to the phase of education (for
example, pre-primary, primary, secondary) in which each of them took place. In
such a case, we extend the between-replication model into the model shown
below, where the level of education is taken into account:

�rs = �0 + �1 pre-primaryrs + �2 secondaryrs + vs ,

where for

pre-primary 0 = primary and 1 = pre-primary

secondary 0 = primary and 1 = secondary.

Where the researcher is looking for the impact of other study characteristics (for
example, the country where the study was conducted or the design of the original
studies) other relevant dummy variables can be added to the above equation.
Finally, we stress the importance of conducting the multilevel meta-analyses twice.
In the first case, all the original studies are included, whereas in the second case,
the so-called ‘sensitivity analysis’, the outliers are removed from the samples to
check the robustness of the findings.
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Conducting meta-analysis to test and develop
theories on educational effectiveness

In this chapter, it is argued that meta-analyses can also be conducted to test
theories on educational effectiveness. By following this approach, the theoretical
framework that is tested can be used to generate the structure upon which the
selection of studies and the classification of the factors/variables used within
each study are based. A meta-analysis using this approach is presented below.
It is shown that this approach helps researchers not only to integrate the findings
across studies but also to test the validity of a theory in a systematic way. Thus,
such meta-analyses are very likely to contribute significantly in providing robust
answers to policymakers and to establishing a better basis for theory development
in the area of educational effectiveness. Moreover, this type of meta-analysis may
reveal which aspects of a theory that is tested have not yet been addressed in
primary studies and can therefore identify the need for future research on
particular topics. In this context, the methods and the main results of a meta-
analysis that uses the dynamic model as a theoretical framework are presented
below. Implications for further research on developing and expanding the model
are identified.

A quantitative synthesis of studies searching for
school factors: testing the validity of the dynamic
model at the school level

The meta-analysis reported here used the dynamic model of educational
effectiveness (Creemers and Kyriakides 2008) as a framework in order to organize
and structure the list of factors reported in the studies included in the review.
The dynamic model was developed in order to establish strong links between
EER and improvement of practice and refers to specific factors, which are pre-
sented below. The review used a quantitative approach to synthesize the findings
of multinational research studies conducted during the last 20 years in order to
estimate the effect size of various school effectiveness factors on student achieve-
ment. The focus is on the substantive findings that emerged from the meta-
analysis, specifically, the extent to which the findings of the review justify the
importance of the school factors included in the dynamic model. In this way,
the meta-analysis reported here not only provides answers about the import-
ance of isolated factors, but also attempts to contribute to the establishment of
the theoretical model by generating evidence supporting some factors of the
model and pointing out possible weaknesses. It also attempts to identify the
factors (or moderators) that account for the variation between studies in reported
effect sizes. This is due to the fact that the effect sizes of studies involved in a
meta-analysis are very likely to vary due to differences in procedures, instrumen-
tation, study contexts and treatments. Identifying the impact that these factors
have on effect sizes gives a clearer insight into the potential impact of school
factors because it helps to clarify the conditions under which each of them is
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able to influence effectiveness. For this reason, the extent to which the impact
of the various factors depends on the criteria used for measuring effectiveness
is identified. Thus, this analysis can reveal school factors that may be termed
generic and/or others that have differential effects.

School factors in the dynamic model

The dynamic model accounts for the fact that effectiveness studies conducted
in several countries have indicated that influences on student achievement are
multilevel (Teddlie and Reynolds 2000). As a result, the dynamic model refers
to factors operating at the four levels shown in Figure 13.1. The teaching and
learning situation and the roles of the two main actors (that is, teacher and
student) are analysed. Above these two levels, the dynamic model also refers to
school- and context-level factors. It is expected that school-level factors influence
the teaching-learning situation through the development and evaluation of school
policies on teaching and on creating a learning environment. The context level
refers to the influence of the educational system at large, especially through
development and evaluation of the educational policy at the regional and/or
national level. The model also accounts for the teaching and learning situation
being influenced by the wider educational context in which students, teachers
and schools are expected to operate. Factors such as the values of the society in
terms of learning and the importance attached to education may play an important
role both in shaping teacher and student expectations as well as in the
development of perceptions of various stakeholders about what constitutes
effective teaching practice.

Since this meta-analysis is concerned with school-level factors, a description
of the dynamic model at the school level is provided below. Figure 13.1 reveals
that the definition of the school level is based on the assumption that school
factors are expected to influence classroom-level factors, especially teaching
practices. Therefore, the dynamic model refers to factors at the school level that
are related to the key concepts of quantity of teaching, quality of teaching and
provision of learning opportunities, which are the same factors used to define
the classroom-level factors (Creemers and Kyriakides 2006). Specifically, the
dynamic model emphasizes two main aspects of school policy that are hypothe-
sized to affect learning at both the teacher and student level: (a) school policy
for teaching and (b) school policy for creating a learning environment. These
factors do not imply that each school should simply develop formal documents
to articulate and install its policy; instead, the factors concerned with the school
policy mainly refer to actions taken by the school to help teachers and other
stakeholders have a clear understanding of what is expected from them. Support
offered to teachers and other stakeholders to implement the school policy is also
an aspect of these two factors.

Based on the assumption that the search for improvement underpins and
defines the essence of a successful organization in the modern world (Kyriakides
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and Campbell 2004), we examine the processes and the activities that take place
in the school to improve teaching practice and the learning environment. It is
for this reason, that the processes used to evaluate school policy for teaching
and the learning environment are also investigated. The following four factors
at the school level are included in the model:

• School policy for teaching and actions taken for improving teaching practice.
• Policy for creating a school learning environment and actions taken for

improving the school learning environment.
• Evaluation of school policy for teaching and of actions taken to improve

teaching.
• Evaluation of the school learning environment.

Methods used in the meta-analysis testing the
dynamic model

Selection of studies

The following databases were examined to identify school effectiveness studies:
Educational Resources Information Centre (ERIC), Social Sciences Citation
Index, Educational Administration Abstracts, SCOPUS, Pro Quest 5000 and
PsycArticles. We also paged through volumes of educational peer-reviewed
journals with interest in EER, such as the journals: School Effectiveness and School
Improvement, British Educational Research Journal, Oxford Review of Education
and Learning Environment Research. Finally, relevant reviews of school effective -
ness studies (Creemers and Reezigt 1996; Fan and Chen 2001; Fraser et al.
1987; Hallinger and Heck 1998; Levine and Lezotte 1990; Sammons et al.
1995; Scheerens and Bosker 1997) and handbooks focused on effectiveness
(Teddlie and Reynolds 2000; Townsend et al. 1999) were also examined for
references to empirical studies.

Criteria for including studies

The next step consisted of selecting studies from those collected in the first
stage. The following three criteria for including studies were used. First, we only
selected studies conducted during the last 20 years that had been purposely
designed to investigate the effect of school factors on student outcomes. Second,
these studies had to include explicit and valid measures of student achievement
in relation to cognitive, affective or even to psychomotor outcomes of schooling.
Third, studies that used more global criteria for academic outcomes, such as
drop-out rates, grade retention and enrolment in top universities, were also
selected. Finally, the meta-analysis reported here focused on studies investigating
the direct effects of school effectiveness factors on student achievement.
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Analysis of data

The multilevel model was applied to analyse the observed effects of each study
and the sources of variation among the findings that emerged from different
studies investigating the effect of the same school-level factor on student
achievement (Raudenbush and Bryk 1985). Specifically, the procedure presented
earlier was followed and the effects of the study characteristics were examined.

Main findings

Table 13.1 provides information about the characteristics of studies investigating
the relation of different school effectiveness factors to student achievement. In
order to demonstrate the empirical support given to the factors of the dynamic
model and the possible importance of factors yet to be included, school factors
were classified into those included in the dynamic model and those not included.
The average effect size of each factor is also provided. The values of the average
effect sizes of the school effectiveness factors support the argument that effective
schools should develop a policy on teaching as well as a policy on establishing
a learning environment. The six factors that belong to these two overarching
school-level factors of the dynamic model were found to have an effect larger
than 0.15. On the other hand, not enough data are available to support the
importance of investigating the evaluation mechanisms that the schools develop
to examine their own policies on these matters. The lack of studies investigating
the evaluation mechanisms of schools and the resulting improvement decisions
may be attributable to the fact that only 8 out of 67 studies are longitudinal
studies that took place for more than two school years.

The last part of Table 13.1 refers to the average effect size of factors not
included in the dynamic model. We can see that a relatively high percentage of
studies (42.0 per cent) measured the relationship between leadership and student
achievement. However, the average effect size of this factor is very small. This
implies that leadership has a very weak direct effect on student achievement.
Moreover, the figures in this part of the table do not reveal support from this
meta-analysis for including any other school factor in the dynamic model.

The next step in the meta-analysis was to use the multilevel approach to
estimate the mean effect sizes of the following five factors: (a) policy on 
school teaching, (b) partnership policy (that is, the relations of school with
community, parents and advisors), (c) collaboration and interaction between
teachers, (d) leadership, and (e) school climate and culture. The multilevel analysis
allows us to estimate the mean effect size of the first three factors of the dynamic
model as well as the effect size of the two factors not included in the dynamic model
that received significant attention in educational research (that is, leadership and
school climate and culture). In this way, we might then be able to justify our
decision to include the first three factors in the model and exclude the other 
two. This approach also allowed us to examine whether the observed effect sizes
vary across and within studies. Table 13.2 shows the results of analyses that
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attempted to predict differences between effect sizes with such study character-
istics as criteria of measuring effectiveness (that is, the use of different outcomes
of schooling for measuring effectiveness), sector of education, country, study design
employed, and the use of multilevel rather than uni-level statistical techniques.

The following observations arise from Table 13.2. First, the results show 
that moderators only had infrequent significant relationships with effect size.
Moreover, no moderator was found to have a significant relationship with the
effect size of all five factors. This provides support for viewing the school factors
as more generic in nature. In regard to the effect of the two factors not included
in the dynamic model, this table also reveals that their effect sizes are very small
and also suggests that in some countries they do not even exist. For example,
in the Netherlands, the effect size of leadership is nearly zero and the effect size
of school climate is very small (that is, smaller than 0.06). It is also important
to note that the sensitivity study revealed that the effect of leadership is greatly
reduced when outliers are removed from the sample. Although this implies that
there is still a positive and statistically significant relationship between leadership
and student outcomes, the indicator loses much of its relevance. On the other
hand, the sensitivity study suggested that the factors from the dynamic model
do remain relevant even when outliers are removed.

Implications for the contribution of meta-analysis 
to EER

Methodological implications for conducting meta-analyses can be drawn from
the example presented above. However, it is also important to note that meta-
analyses are usually conducted for two main reasons. First, researchers are
interested in appraising the cumulative existing knowledge in a field, and the
main aim is therefore to give specific answers about the effect of certain factors
or of specific interventions on some other variables. In this way, both policymakers
and practitioners can make use of the results. For example, a meta-analysis that
is concerned with the impact of different forms of homework on student
achievement can help stakeholders to develop policies at the national or local
level in order to improve teaching practice. Second, researchers may also be
interested to use the findings to build a new theory or for designing future
studies. However, the approach used in the multilevel meta-analysis reported
here was relatively new. For the purposes of this meta-analysis, we used a
theoretical framework based on the dynamic model to guide the structure and
classification of factors and to interpret the findings. Based on the results, evidence
supporting the validity of this framework was generated and suggestions for the
further development of the model emerged. It can, therefore, be claimed that
using this approach to conduct meta-analyses helped us not only to integrate
the findings across studies, but also to systematically test the validity of a theory
and thereby better contribute to theory development in the area of educational
effectiveness.
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The theoretical framework used for this meta-analysis also refers to relatively
new factors and for the first time introduces a multidimensional approach to
measuring the functioning of school factors. Due to the fact that a theoretical
model is expected to introduce new ways of understanding educational effective-
ness, some limitations of using meta-analysis to test a theoretical model may
emerge. For example, the meta-analysis reported here could not test the validity
of the two school-level factors concerned with the school evaluation mechanisms
since relevant studies were not identified. However, this meta-analysis points to
the importance of examining the effects of school evaluation mechanisms in a
more systematic way rather than by looking at student results alone. The two
relatively new school-level factors included in the dynamic model (and the
operational definition attached to them) may have significant implications for
the design of future effectiveness studies. Specifically, the fact that the dynamic
model emphasizes actions taken to evaluate and change school policy seems to
imply that longitudinal studies should be conducted to measure the impact of
these factors on the effectiveness status of schools rather than investigating the
relation between the existing practice and student achievement. Thus, this chapter
not only drew attention to the use of meta-analysis for the synthesis of research,
but also for the development of theoretical frameworks of EER. Implications
for designing better studies that are able to describe the complex nature of
effectiveness can also be drawn.
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Methodological advances
and EER
Retrospect and prospect

Part C





Conclusions for the
development of EER

Introduction

In this book we have sought to provide an authoritative account of the history
and the current state of the methodology of EER and the way it has been
developed and applied in research and evaluation to study teacher and institutional
effects. By doing so, we have attempted to promote the further development of
theory and research in educational effectiveness, which, at least in part, depends
on the further development of appropriate research methodology to study the
multilevel and complex interlinked features of educational systems and institu-
tions. At the same time, it has been shown that the knowledge base of EER
and its attempt to establish theoretical models continue to offer several challenges
to researchers in the design of methodologically appropriate studies, such as
ways of analysing clustered and longitudinal data. Next to this more theoretical
perspective of the book, we have discussed the appropriate use of more advanced
and recently developed research techniques by educational effectiveness
researchers. Our aim was to provide sufficient background for students and
researchers to gain a better understanding of the main features of each method
and to discuss examples of the use of each method in the context of EER. In
this way, both students and researchers can be helped to refine their own research
agendas and identify appropriate methods that can be used for the design of
their studies and the analysis of their data.

Therefore, in the last part of this volume, we seek to link the themes of the
first two parts of the book by relating the further development of theory and
research in educational effectiveness (presented in Part A) to current trends and
advances in the methodology of research in the social sciences, discussed in 
Part B. We also draw on (and link together) the main conclusions that emerged
from the various chapters of the book to create a conceptual map for conducting
methodologically appropriate effectiveness studies, which we believe will contri-
bute to the future development of EER. Finally, a number of research topics
are identified that are likely to prove fruitful avenues of enquiry for further
advances in the EER knowledge base.

Chapter 14



Main issues emerging from Part A and Part B

In the first part of the book, it was shown that EER has benefited greatly from
the gradual evolution and application of more methodologically rigorous
approaches in conducting effectiveness studies. For example, some of the studies
conducted during the third and fourth phases of EER were only made possible
due to further advances in research methodology, such as the use of advanced
multilevel modelling and Structural Equation Modelling techniques. As a result
we can identify reciprocal improvements in both the methodology of EER and
in the establishment of the knowledge base of the field. Part of this ongoing
process of gradual improvement has involved a movement away from raising
largely descriptive questions concerned with the characteristics of effective and
ineffective schools to searching for direct and indirect associative and causal
relations between factors and learning outcomes. As a consequence of this shift
in the research agenda of EER, the methodological issue of how to conceptualize
and measure causality is becoming a critical one for the future development 
of the research methods used within EER. Moreover, a stronger emphasis on
establishing theories to promote greater understanding of the processes of
educational effectiveness has emerged. However, this again highlights the need
for further development of the methodology of EER in order to test, further
refine and expand these theoretical models. Furthermore, in the last chapter of
Part A, it was argued that EER should ultimately attempt to influence policy
and practice by establishing theory-driven and evidence-based approaches to school
improvement. It was also argued that EER is likely to have a greater impact on
policy and practice if theory-driven evaluation studies based on theoretical models
of EER are conducted. A framework for conducting such studies was provided
based on methodological advances that are also useful for conducting basic
research on effectiveness. It is expected that the results of such evaluation studies
will also contribute to the further theoretical development of the field.

In the second part of the book, the use of different types of research design
was discussed. It was shown that different research methods can address specific
research questions in a more or less appropriate way and that researchers need
to consider the advantages and limitations of alternative methods when designing
EER studies. Beyond the use of specific research designs (that is, longitudinal
studies, experimental studies and mixed methods research) to collect original
data, we argued for the importance of conducting quantitative syntheses of
effectiveness studies in order to enhance and refine the existing evidence base
and to test and further develop different theoretical models of EER. As a
consequence, methodological issues that need to be considered in conducting
meta-analyses were then discussed. The importance of conducting secondary
analyses of data from major international comparative studies was then raised
before it was argued that researchers within EER should make use of advanced
measurement theories (such as Item Response Theory and Generalizability
Theory) in order to investigate the construct validity of their measurement
instruments and develop psychometrically appropriate scales to measure key
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constructs of interest. By making use of Generalizability Theory, D studies can
also be conducted in order to help researchers take decisions on designing their
studies. Finally, it was then argued that the complex nature of educational
effectiveness and the need to elaborate on it by drawing on empirical data that
can emerge from any kind of study (from basic research to evaluation), necessitates
the use of advanced techniques in analysing data. A particular emphasis was given
to the role of multilevel modelling and Structural Equation Modelling techniques.
For the purposes of analysing longitudinal data, both of these approaches can
prove useful, but a number of suggestions were made about how to identify the
particular conditions that will help a researcher decide which of them is most
appropriate in a given study (not that they are mutually exclusive).

In this section, we raise three issues that have emerged from analysing and
comparing the arguments and conclusions drawn in each of the preceding
chapters. First, although each chapter addressed a specific methodological topic,
we can conclude that there are interrelationships among the different method-
ological tools that can be used to promote the aims of EER. For example, in
Chapter 5 (concerned with conducting longitudinal studies) the readers were
shown how different advanced statistical techniques such as multilevel analysis
and Structural Equation Modelling can be applied to analyse data collected
across a series of time points – for example, following cohorts of students in a
longitudinal study. It was also shown that in specific circumstances, one approach
rather than the other can be a more appropriate choice. Similarly, in the chapter
on meta-analysis, readers were shown how multilevel modelling can be adopted
to enable conclusions to be drawn about the characteristics of the studies included
in a meta-analysis that help to explain variations in the observed effect sizes
identified for interventions of interest. These two examples illustrate some
coherence and similarities in the issues raised across the various chapters of this
book and how researchers within the EER tradition may benefit from knowledge
about a broad spectrum of interrelated methodological tools.

Second, these earlier chapters can also be seen as complementary. It is clear
that not all the contributors share the same views about the appropriateness of
using different methodological tools within EER. For example, the importance
of using experimental studies to demonstrate causal relations was stressed in
Chapter 6, which saw them as a ‘gold standard’, whereas the reasons for using
other approaches to demonstrate causality such as longitudinal studies and 
cross-sectional (large-scale) studies were discussed in Chapters 3 and 5. Readers
can therefore evaluate the various arguments made in each chapter to reach
conclusions about what may prove most fruitful for research designs in their
own projects to assist them in building appropriate models and searching for
cause-and-effect relations. Similarly, the chapters on IRT and on the use of
Generalizability Theory presented different measurement theories that are based
on different underlying assumptions. Again, we take an instrumental perspective
and suggest that readers seek to identify which of the different theories of
measurement can be used to help them test the validity of their instruments
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rather than advocating the use of a specific measurement theory. Similarly in
Chapter 7, the use of mixed methods research was advocated as a way of enriching
existing EER studies by illustrating ways that the combination of quantitative
and qualitative approaches and the integration and synthesis of different sources
of evidence can produce new and synergistic understandings. This implies that
under specific circumstances, researchers may choose to integrate these two
approaches rather than treating them as contradictory. Instead of giving emphasis
to the different ontological, epistemological and methodological assumptions
(Cohen et al. 2000; Robson 1993) upon which each is based and emphasizing
incompatibility, the chapter promoted the idea that we can improve our
understanding of the nature of educational effectiveness in different contexts by
making use of both approaches in designing EER studies. However, researchers
need to decide whether both approaches should be treated as equally important
in addressing a particular type of research question or whether to make use of
alternative approaches to address different questions. Much will depend on the
research aims but a fully integrated mixed method design that involves ongoing
dialogue between the two approaches at all stages of an enquiry was seen as
more authentic and potentially more illuminating.

Third, a topic that was important across almost all chapters is the issue of
statistical power (Cohen 1988). If researchers underestimate the importance of
this issue, they may conduct a study that is not powerful enough to identify
potential associative and causal relations and, thereby, will be unable to draw
any implications from their findings for the further testing and refinement of
the drawn upon theoretical framework of EER. Usually, statistical power is seen
as a particularly important issue in conducting experimental studies (see Chapters
3 and 6). However, in this volume, we also tried to make explicit that the issue
of power is important in designing any type of study and also in using advanced
statistical techniques to analyse quantitative data. For example, statistical power
is a crucial element in deciding on appropriate sample sizes where propensity
score-matching techniques are used to analyse data to demonstrate possible
cause-and-effect relations (see Chapter 3) and requires large initial samples.
Without a sufficiently large sample at the start, a study may, for example, end
up with two comparable groups of subjects (for example, students, teachers,
schools) but the size of the final sample may be insufficient to demonstrate any
statistically significant relations because a small sample size increases the possibility
of a type II error. Similarly, statistical power is also an issue that has to be taken
into account in designing studies that are expected to produce nested data
analysed through multilevel modelling approaches (see also Cools et al. 2009).
Here, it is typically recommended that at least 40 higher level units (for example,
schools) be sampled in order to tap sufficient variance. In addition and depending
on research purposes, sufficient numbers of lower level units (for example, classes
and students) are also required to produce robust estimates, confidence limits
and to enable examination of interaction effects across levels. In the next section,
the main issues for designing a rigorous effectiveness study that have emerged
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from the first two parts of the book are taken into account in establishing a
guide or road map for researchers aiming to contribute to the future theoretical
and methodological development of the EER field.

Guidelines for conducting a rigorous
effectiveness study

Based on issues raised in Part A with respect to the theoretical development of 
EER, in this section we classify the research topics that need further investigation
into three major areas, and under each, specific research topics that need to be
addressed are mentioned. In this section, we also refer to the sequence of decisions
that have to be taken in planning a competent effectiveness study. These decisions
address the six steps that researchers have to follow in designing and implementing
a study and reporting its results. Methodological approaches that can be used to
provide answers to each type of research question are also here identified. In this
way, a road map for conducting more rigorously planned effectiveness studies is
provided. In the next section we then move a step forward by suggesting a future
research agenda for the field by indicating the research topics that we believe need
more attention at this stage of the development of EER.

In the first chapter of this book, it was made explicit that the main research
question underlying most educational effectiveness studies is to identify factors
at different levels (for example, school, class/teacher) that are associated directly
or indirectly with students’ learning outcomes and to seek to explain (through
reference to theory) why these factors influence students’ learning outcomes.
This implies that EER attempts to establish and test theories that explain why
and how some schools and teachers are more effective than others in promoting
better outcomes for their students. Thus, the first area of investigation for EER
is concerned with the development and validation of the theoretical framework
of educational effectiveness. This framework aims to explain how, why and under
what conditions specific factors operating at different levels of the educational
system have an impact on student learning outcomes. By doing so, researchers
attempt to establish and validate a knowledge base that can be used for 
improving educational practice and that is of relevance to both policymakers and
practitioners.

The relevance of the knowledge base generated by researchers for use by
policymakers and practitioners suggests that beyond modelling effective practices,
a second area of investigation that needs to be examined is the use of this
knowledge base for improvement purposes. The importance of this second area
of investigation reflects the fact that the ultimate aim of EER is to improve
practice, and it is argued that improvement is most likely to be achieved by
helping schools and teachers to make use of the research-generated knowledge
base of EER in order to develop their improvement strategies and actions
(Mortimore 1998; Sammons 1999). In this chapter, we move a step forward
and suggest that the research agenda of EER should be expanded by not only
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attempting to develop a valid theoretical framework, but also by investigating
under which conditions this framework can be used for improvement purposes.

Since EER is also expected to influence policy, the third area of investigation
is concerned with the need to identify how the theoretical framework of EER
can be used for designing evaluation mechanisms for measuring teacher and
school effectiveness either for summative or for formative reasons. For example,
studies attempting to generate evaluation criteria that emerged from various
models of EER have already been conducted (Kyriakides et al. 2006) but further
studies are needed to identify how policy conditions (and changes in these, such
as specific education reforms) can influence the improvement of practice and
student outcomes (Dobert and Sroka 2004; Sammons 2008). Through these
kinds of studies, EER can identify better ways to promote the use of its knowledge
base for developing reform policies to improve the quality of teaching and raise
educational standards.

Figure 14.1 illustrates the six steps that we recommend researchers follow in
designing, implementing and reporting the results of their studies. These six
steps provide suggestions on how researchers can make use of advanced
methodological techniques in taking decisions on how to conduct their studies.

The first step is concerned with the identification of the area of investigation
to which the study belongs. A study could attempt to contribute to the modelling
of educational effectiveness (first area of investigation) or to search for a use of
the knowledge base of EER in order to improve either the practice (second area
of investigation) and/or the design of evaluation reform policies (third area of
investigation). Under each of these three areas, some specific research topics are
mentioned that may help researchers develop their plans for future studies.
Although the importance of investigating specific research topics associated with
each of these three areas of investigation is discussed in the next section of this
chapter, at this step researchers should not only identify their area of investigation
but also clarify their own research questions. In order to identify important
research questions, they should conduct a systematic review of the relevant
literature, which will also give attention to methodologies used and the
strengths/limitations of the designs and analyses of previous studies. In this way,
important research question will be identified.

At the second step, researchers are expected to identify the most appropriate
type of research that has to be used in order to provide answers to their research
questions. Specifically, in this step the decision has to do with the extent to
which an experimental, longitudinal, cross-sectional (large-scale) or mixed
methods study should be conducted and whether the researcher will conduct a
secondary analysis of existing data sets or collect new empirical data. Beyond
conducting an original study, researchers could also consider the possibility of
undertaking a quantitative synthesis of original studies (for example, meta-
analysis). In Part B, the main advantages and disadvantages of using each type
of study were presented. In addition, in Chapter 3 we discussed how each type
of study can be used in order to demonstrate causal relations. We stress that
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none of these types of studies can be considered unique in demonstrating cause-
and-effect relations, but researchers should take into account the circumstances
under which their studies can be carried out. In choosing the type of research
we are going to undertake, we should not only take into account the theoretical
development of the field in relation to the research questions raised but also
practical considerations (for example, cost, time).

Beyond taking some general decisions about the type of study that could be
used, at the third step researchers need to take more specific decisions about
the design and the sample of their study. In respect to this need, the chapter
on Generalizability Theory (Chapter 10) revealed how this measurement theory
can help us take decisions on how to conduct an effectiveness study. For example,
a D study can be conducted in order to identify how many observations are
needed in order to generate reliable data about the teaching skills of a sample
of teachers without spending too many resources on data collection. Similarly,
a D study can help us identify the optimal number of observers that can be used
to collect reliable data on the quality of teaching. A special type of decision that
has to be taken in regards to this is concerned with the sampling procedure and
the sample size. With regard to the sampling procedure, researchers should be
aware of the nested character of data in educational effectiveness studies and the
statements that they may like to make about the size of teacher, classroom, school
and system effects. Moreover, studies making use of an experimental design need
to make sure that random sampling takes place at the appropriate level of the
study. For example, a study investigating the impact of interventions conducted
at the school level needs to allocate schools randomly rather than teachers and/or
students (the advantages of group randomization studies are discussed in Chapters
3 and 6). In the previous section of this chapter, the importance of statistical
power was again raised, and decisions about the size of the sample should be
based on the results of simulation studies that search for the optimal size that
can produce enough statistical power in relation to the parameter of interests
in each study (Cools et al. 2009). For example, a study investigating differential
teacher effectiveness in relation to the characteristics of students should attempt
to select more students from each class in order to have enough power to search
for random slope(s) at the lowest level. By contrast, more classes/schools are
needed in studies where the estimation of the intercept is the main focus of the
research, such as studies attempting to classify teachers/schools in different
groups by taking into account their effectiveness status.

The fourth step is concerned with identifying key constructs that an EER study
needs to address, the development of research instruments and the testing of their
validity and reliability. At this step, researchers should make clear how the main
constructs of their study relate to existing EER models and theories. In this way,
the contribution of the study to the theory development of the field will be
identified. Further, researchers should also make use of measurement theories
described in Part B in order to develop new instruments and/or find out whether
available instruments can produce valid and reliable data in different educational
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contexts. Unless the construct validity of a study’s instruments is demonstrated,
no claim about the effect of any constructs can be made. Therefore, this is an
important step since it provides data to help researchers clarify the structure of the
constructs that are used to describe different types of variables. For example, a study
searching for the impact of teacher perceptions towards teaching upon student
outcomes should not only develop instruments to measure perceptions but also
use appropriate techniques to clarify the various latent variables that are used to
measure the perceptions. In this respect, researchers can consider the possibility
of using either Item Response Theory or Confirmatory Factor Analyses within SEM
to investigate the factor structure of their research instrument and clarify the
meaning of their explanatory variables. Advantages and limitations of each
approach are discussed in Chapters 8, 9 and 12, and researchers should consider
them in choosing their own approach. Moreover, in almost all effectiveness studies
it is likely that student learning outcomes may need to be measured. Therefore,
researchers should make use of different measurement theories in order to produce
psychometrically appropriate scales and use a pre- and post-test design over two
or more time points to measure change and identify the progress that each student
makes. In particular, special attention should be given to establishing appropriate
scales of learning outcomes in longitudinal studies. In this case, test-equating
approaches can also be used to help researchers develop instruments that can be
administered to different age groups of students, which, though not identical, can
nonetheless produce comparable scores. Although both Classical Test Theory and
IRT produce different test-equating approaches, the advantages of using IRT for
this purpose are clearly pointed out in Chapter 9.

At the fifth step, researchers are expected to make use of appropriate advanced
techniques, such as SEM and/or multilevel modelling, to analyse their quantita-
tive data (in mixed methods designs there are additional considerations as
discussed in Chapter 7). Obviously, decisions taken at the earlier steps are likely
to affect decisions on using a specific approach to analyse the data. For example,
in cases where data from a longitudinal study design will be collected, researchers
could consider the possibility of using either SEM techniques to estimate a growth
model or a multilevel regression analysis model treating measurement occasion
(time) as the first level. These two techniques have their unique advantages. As
shown in Chapter 5, with multilevel regression models you can have, in principle,
as many levels as your nested data imply (that is, student, teacher, school, district,
and so on). Moreover, you can also take into account that students can move
from one group to another group (for example, from one classroom to another
or from one school or neighbourhood to another) and develop a cross-classified
model. On the other hand, the SEM technique allows researchers to treat
variables as having a double role, and this makes it possible to set up and test
chains of variables that may influence each other both directly and indirectly
(thus testing hypotheses of mediation). Obviously such SEM models must be
specified by taking into account either an underlying theory supporting the
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existence of such relations or results of previous original studies and/or meta-
analyses. This comparison shows that decisions taken at step 1 dealing with the
research questions and the theoretical framework underlying an effectiveness study
play an important role not only in choosing to conduct a specific type of study
(that is, in the above example a longitudinal study) and the design of a study
(steps 3 and 4) but also in choosing the appropriate method of analysing the
resultant data (step 5).

At the final step, researchers should make decisions on how to report their
results and on how to design further studies that can test the generalizability of
their findings and/or raise further questions. Reporting is not always treated
seriously, but it is stressed here that it is an important step in the research process
especially since it provides future readers with the necessary information to
evaluate the strength of the knowledge claims that are made and take further
steps either by: conducting a new investigation such as a replication study; using
it for conducting a meta-analysis; building on its findings to define new research
questions; or for taking decisions on how to build a reform policy or an
improvement strategy. For this reason, in this chapter we discuss in more detail
the issue of reporting and provide some guidelines for reporting original studies
and meta-analyses.

The issue that has to be considered here is the identification of the information
that it is necessary to report. From the view point of research, information on
the effect size of each factor that is examined should be clearly reported since a
study that does not provide enough information cannot be used for conducting
a meta-analysis. In particular, within Chapter 13 the importance of conducting
meta-analyses within EER was stressed. However, researchers conducting meta-
analyses usually find some relevant original studies that do not report enough
information about the effect size of each factor involved in the study, and as a
consequence, these studies cannot be included in their meta-analyses. Moreover,
in Chapter 13 it was demonstrated that a meta-analysis can also be used in
attempting to identify whether specific characteristics of the original studies
explain variation in the reported effect sizes. This implies that researchers should
provide enough information about the type of their study and about the processes
used to collect data. For example, claiming that an experimental study was
conducted is not enough unless the process of formulating the different experi-
mental groups and the treatments offered to them is reported as well. In this
way, readers can see whether an experimental or a quasi-experimental study was
conducted and can also evaluate the internal and external validity of the reported
findings. Information that should also be reported is concerned with the process
used to demonstrate the validity and reliability of the data. In Chapter 13, it was
stressed that one of the major criteria for selecting studies to include in a
quantitative synthesis has to do with the information provided about the validity
of the instruments used to collect data. This implies that the step concerned
with the reporting of studies is related to all the other steps presented in Figure
14.1, since information should be reported about the type of study that was
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carried out, the processes used to collect data, the processes used to investigate
the validity of the data and the effect sizes that emerged from using different
techniques to analyse the data.

With respect to reporting the actual findings of a study, we emphasize the
importance of reporting information concerned with the processes used to analyse
data by using advanced statistical techniques such as SEM and multilevel
modelling. For example, in the chapter on SEM (Chapter 12), we stressed the
importance of reporting relevant covariance matrices used to develop and test
a model, and the importance of reporting different fit indices. In the case of
multilevel modelling, Dedrick et al. (2009) conducted a review about the quality
of the reporting of studies using this technique and a set of guidelines on their
reporting was advocated. Specifically, it was argued that researchers should state
explicitly whether centring was used, whether and how the distributional
assumptions were tested and whether the data were complete. Obviously, it is
also important to provide either standard errors or confidence intervals for the
parameter estimates that emerged from the multilevel analysis. In this way, the
effect sizes of the factors included in the study will be estimated and the quality
of the analysis carried out can be evaluated.

By providing such information, the quality and the relevance of a study can be
evaluated and other researchers can incorporate the study in subsequent meta-
analyses. In addition, they can also use it for conducting a replication study or
treating it as a starting point for further research. In regard to the importance of
conducting replication studies in EER, very few direct replication studies have been
conducted despite the development of a validated knowledge base (that is, the first
area of investigation mentioned above), depending on replication studies that can
test the generalizability of the reported findings. As far as the use of an original
study as a starting point for designing further studies is concerned, we advocate
the need for gradually building a research programme by taking into account the
results of earlier studies. In this way, a strong contribution to the development of
a theoretical framework of EER can emerge. For example, a study investigating
the impact of specific factors on student achievement by drawing data from a
specific phase of education (for example, primary education) and focusing on 
a specific type of learning outcome (for example, mathematics) could be seen as
the starting point to search for the existence of generic factors that can explain
variation in achievement in different types of outcomes (for example, affective as
well as cognitive) and for different groups of students (for example, secondary
students; see also Kyriakides and Creemers 2009a). By reporting original studies
in a way that has implications for conducting further studies, readers are better
placed to identify any limitations in the original studies and so be stimulated to
search for ways to design subsequent studies that address these limitations.

So far the discussion of reporting has been concerned with original studies
and their use for conducting other empirical studies and/or meta-analyses.
However, the issue of reporting is also very important in presenting the results
of a meta-analysis (see Chapter 13), and we have emphasized the need to use
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specific criteria to select the original studies. These criteria have to be reported
in order to provide the reader with enough information about the quality of
the meta-analysis. Unless the reader is aware of the reasons why specific studies
were excluded, doubts about the generalizability of a meta-analysis may emerge.
For example, the review of the quality of the reporting of the results of studies
using multilevel modelling mentioned above did not include any study reported
in the School Effectiveness and School Improvement journal, but no reason for this
was given. Due to this omission, Dedrick et al. (2009) did not cover many
important EER studies that have used multilevel modelling and provide good
examples of informative reporting of results. This seems to reflect a lack awareness
of the important contribution of European researchers (and other researchers in
non-American contexts) and of the widespread use of multilevel modelling in
EER in particular (Sammons 2009). Second, the process used to analyse effect
sizes reported in different studies has to be explicitly reported. In Chapter 13,
we suggested the use of multilevel modelling to conduct a meta-analysis.
Irrespective of whether multilevel modelling is applied, researchers need to
provide information about each technique used to conduct their meta-analysis,
especially where a meta-analysis is set up to search for the impact of more than
one factor upon student achievement. In such a case, researchers should not
only report the technique(s) used to analyse their data, but also the studies
included in each type of analysis. Some meta-analyses in the area of EER are
not reported as following the above guidelines, and it is thereby difficult for the
research community to evaluate their conclusions. For example, a meta-analysis
of 27 studies carried out by Robinson et al. (2008) does not refer to the criteria
used to select 27 out of more than 100 school effectiveness studies identified
by other meta-analyses looking at the effect of the same school factors (Scheerens
et al. 2005; Kyriakides et al. in press). Moreover, it is not clear what kind of
analysis was carried out and whether the nested character of data was taken into
account. Furthermore, it is not reported which studies were used to estimate
the average effect size of each factor. Therefore, it is difficult to interpret the
results of this meta-analysis, especially since two other similarly recent meta-
analyses (Scheerens et al. 2005; Kyriakides et al. in press) found much smaller
effects of the school factors concerned with leadership on achievement that were
the subject of the Robinson et al. (2008) meta-analysis, and these alternative
meta-analyses reported their results by following the guidelines mentioned here.

In this section, we have referred to decisions that have to be taken about the
reporting of results and have formulated some guidelines with respect to reporting
results of original studies and meta-analyses. Following these guidelines should
enhance the research community’s ability to evaluate the quality of any reported
study. It is therefore suggested that primary researchers should take these
guidelines into account and thoroughly describe their methods and results,
especially since more complex types of research and advanced statistical techniques
are increasingly used in EER. Moreover, these guidelines could be taken into
account by manuscript reviewers and journal editors in order to promote the
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quality of the scientific papers and allow readers to evaluate the quality of
reported studies. Finally, those academics teaching research methodology courses
and courses on conducting evaluations should include discussion of best practice
in research reporting in their courses and especially those dealing with the use
of advanced statistical techniques such as SEM and multilevel modelling.

From the viewpoint of policymakers and practitioners, it is also important that
the results of a study are reported by following the above guidelines. Providing
information about the methods used to conduct a study can help policymakers to
evaluate the quality of the study (which might not be their prime interest) and to
see the relevance of the study for the specific decisions that they have to take in
order to develop and implement an improvement strategy. Moreover, reporting
the effect sizes of different factors on specific learning outcomes may help them
select the improvement strategies most likely to achieve the educational goals 
they want to promote. This is due to the fact that their decisions may be based
partly on comparing the efficiency and costs of different strategies, and in order
to draw such a decision, they will find it helpful to compare the reported effect
sizes in different studies.

Future directions for the development of
educational effectiveness: suggestions for a
research agenda

This book illustrates that educational effectiveness remains a dynamic field of
enquiry and, if no longer in its adolescence, one that is still certainly in an early
stage of maturity. EER remains an exciting area with many possibilities to
influence not only policy and practice but also the development of advanced
methodological approaches with which to study education. There are numerous
opportunities to consolidate, refine and extend the existing knowledge base of
school and teacher effectiveness and, in particular, to develop its methodology
further. Moreover, the need for better links with (and contributions to) thought -
ful school improvement and evaluation studies remains urgent. In this chapter,
we have distinguished three areas of investigation that need further development,
but we acknowledge that some studies or research programmes may address
research questions that are concerned with more than one area (see Figure 14.1).
Below, we refer to the importance of investigating ongoing research topics
associated with each of these three areas of investigation and which are also
related to the current methodological developments in social science.

First, topics related to the development and testing of theoretical models
need to be taken into account. Specifically, beyond searching for the impact of
factors operating at different levels (such as measures of the quality of teaching
and various school organizational variables) it is important to elaborate their
ways of functioning and develop validated constructs. For example, Creemers
and Kyriakides (2008) developed a framework to measure the functioning of
factors in relation to five dimensions: frequency, focus, stage, quality and
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differentiation. Although some studies testing the validity of this measurement
framework have been conducted (Kyriakides and Creemers 2008a), further
studies are needed to develop this framework or to produce alternative approaches
in conceptualizing teacher and school factors rather than treating frequency as
the only measurement dimension of effectiveness.

Second, another topic that has to be considered is the nature of the impact
that each factor may have on student outcomes. In this respect, one could search
for direct and/or indirect effects of factors on student achievement or other
outcomes and/or for the existence of generic and/or differential factors. Some
studies have already made use of the advanced statistical techniques such as SEM
and multilevel modelling to search for direct and/or indirect effects of school
factors (De Maeyer et al. 2007; Creemers and Kyriakides forthcoming, 2010)
but further studies are needed, especially since strong indirect effects were rarely
found, whereas theoretical models argue that school factors are expected to have
mainly indirect rather than direct effects (Creemers and Kyriakides 2008;
Scheerens 1992; Stringfield and Slavin 1992). A similar problem seems to have
emerged in studies testing the validity of models promoting differential teacher
and school effectiveness (Campbell et al. 2004), which revealed that contrary
to expectations, factors had mainly generic effects for different groups of students
(Kyriakides 2007; Muijs et al. 2005). With respect to this topic, researchers could
search for the impact of contextual variations influencing effectiveness at school,
regional and national levels through conducting comparative international
research studies. Such studies may not only provide support to the generalizability
of theoretical models but may also reveal that some factors have differential effects
(Reynolds 2006; Teddlie et al. 2006).

A third research topic that needs to be addressed is whether there are factors
that have situational effects, leading them to be more important in particular
contexts. One study has demonstrated that school policy for teaching and actions
taken to improve teaching have stronger effects in schools with poor teaching
practice at the classroom level (Creemers and Kyriakides 2009). However, further
studies are needed to test the generalizability of these findings and identify other
school and/or system factors that may also have situational effects.

Fourth, a research topic that is very closely related to current methodological
advances is the identification of nonlinear relations between specific factors and
learning outcomes. Although some argue that the difficulties in demonstrating
the impact of some factors on student achievement is due to possible nonlinear
relations (see for example the arguments about the impact of teacher subject
knowledge supported by Darling-Hammond 2000), as far as we are aware, there
are no studies demonstrating such relations. Identifying significant nonlinear
effects might not only reveal the need to use better methods to analyse our data
but also to design more appropriate types of studies, such as longitudinal studies
that last for longer time periods.

A fifth topic that needs further attention is the concept of the grouping of
factors, such that factors operating at the same level may be related to each
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other. This concept was initially introduced by the educational productivity
model of Walberg (1984) and developed further in the third phase of EER
(Creemers 1994; Scheerens 1992; Stringfield and Slavin 1992). However, only
recently a study has shown that the grouping of teacher factors can be related
to student outcomes (Kyriakides et al. 2009). This study made use of IRT to
develop stages of teaching skills, and then the relations of these stages to outcomes
was demonstrated by using multilevel modelling. Further studies making use of
advanced methodological techniques are yet needed to see whether groupings
of school factors can also be established and whether such groupings of factors
may be useful for developing strategies to improve practice.

Sixth, in respect to modelling effectiveness, we can see that there is almost
no empirical study treating equity as a dimension for measuring effectiveness.
Given that existing evidence suggests that school effects vary most for dis-
advantaged groups (Scheerens and Bosker 1997), it is argued here that further
studies are needed to establish whether particular approaches to teaching and
methods of organization promote better outcomes for disadvantaged students.
For example, a review by Van der Werf (2006) argued that direct instruction 
is more beneficial than constructivist approaches to teaching low SES children
and younger and lower attaining groups. In this respect, issues of differential
effectiveness and stability and consistency of effects also require further investi -
gation. Student and family background factors that predict educational outcomes
and the size of the equity gap in achievement remain foci of continued interest
– particularly how they may interact with school and classroom processes
(Sammons et al. 2008). By searching for schools that manage not only to
promote educational achieve ment for their students (quality) but also to reduce
the initial gaps (equity), EER can provide better responses to those criticizing
schooling as not able to reduce inequality in education (Sammons 2007; 2010).

Seventh, researchers need to identify the long-term effects of teachers and
schools in terms of both quality and equity. Research concerned with the long-
term effect of schools is of great importance not only for establishing the
theoretical framework of EER but also for political and accountability reasons.
If a teacher turns a student off mathematics for life then this would be a disastrous
consequence and probably more important than any other short-term achieve -
ment loss. On the other hand, if a teacher is able to motivate a student to be
interested in science and this leads to a long-term career, then that is of far
greater importance than a few gains in points on science, as research on the
short-term effect of schools has demonstrated. However, relationships may well
also be reciprocal. If poor teaching leads to low attainment in some subjects,
students are likely to struggle, lose academic self-concept and are then more
likely to drop subjects they find difficult. The experience of poor teaching in
successive school years is particularly disadvantageous and may compound existing
disadvantages. By contrast, attending a more effective school for several years
has measurable benefits (Goldstein and Sammons 1997). Through long-term
benefits, schools may play an important public role in helping children overcome
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the cognitive, social and emotional deficits that frequently accompany growing
up in economically deprived homes (Spielhagen 2006). However, in order to
measure the long-term effect of teachers and schools, high quality longitudinal
data with appropriate controls are needed, and the use of advanced multilevel
modelling approaches should be considered (Kyriakides and Creemers 2008b)
in order to generate valid estimates of long-term teacher and school effects.

Moving to the second area of investigation, we can identify four research
topics that can help us understand the conditions and the means by which schools
can make use of the theoretical framework of EER to improve their effectiveness
status. The first topic that has to be addressed is concerned with the impact that
changes in the functioning of teacher/school/system effectiveness factors may
have for the improvement (or decline) of teacher/school/system effectiveness.
This topic also draws attention to the importance of looking at changes in the
effectiveness status of schools. Rather than treating the achievement of a single
group of students as the dependent variable (thus implying stability in school
effectiveness) studies attempting to explain changes in the effectiveness status of
schools will reveal that the main aim of effectiveness studies should be a better
understanding of the change of the effectiveness status of schools. By collecting
data in more than two periods from the same schools and if possible following
them during a long period, EER should produce a better picture of the complex
process of institutional change and of the associative and causal factors that predict
improvement or decline. Moreover, mixed research methods can be employed
for studying schools where dramatic changes in their effectiveness status are
observed, and this is likely to be important in increasing our understanding of
the processes of change.

The second topic is focused on the development of intervention programmes
that are based on a theory-driven and evidence-based approach – although the
impact of these interventions on student learning outcomes must also be
measured. For example, experimental studies can be conducted in order to
identify the extent to which the use of a theoretical framework may help us to
design an effective intervention strategy to improve either teacher or school
effectiveness. Such studies may also help us to identify under which conditions
such an approach is more effective rather than approaches promoting the
improvement of practices based on action research (for example, by encouraging
teachers and schools to develop their own actions without considering the
existing knowledge base of the EER field).

Third, one of the most difficult topics that needs to be considered concerns
the obstacles that schools face in introducing an improvement strategy. In this
respect, mixed method research might be employed to find out how teachers
and schools could move from being resistant to change to becoming committed
to school improvement strategies. Such studies may help us expand the theoretical
framework of educational effectiveness by helping us identify variables that are
associated with the effective implementation of an improvement strategy,
especially in a context of difficult circumstances where performance is very low
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and resistance to change is very high. Purely quantitative studies testing the
validity of this framework will also be needed since they allow the possibility of
developing more generic models for understanding the process of change and
implementing it effectively.

Fourth, a topic that looks at the other end of the continuum is concerned
with the efforts that the most effective schools take in order to remain effective.
Currently, there are almost no studies looking at the improvement strategies
that effective schools take in order to remain effective. However, a study following
50 schools for a period of five years has shown that schools that were more
effective had to act to improve the functioning of school factors in order to
remain among the most effective, otherwise they dropped to a typical level
(Kyriakides and Creemers 2009b). Moreover, a mixed method study by Day et
al. (2009) investigated schools that remained academically effective over at least
three years and pointed to the importance of adopting a range of strategies to
improve. Further studies testing these findings are needed in order to help us
better understand the dynamic nature of educational effectiveness and in
supporting actions that should be taken to enable schools to remain effective.

The third proposed area of investigation is concerned with the use of EER for
establishing evaluation mechanisms and designing theory-driven evaluation
studies. The importance of conducting theory-driven evaluation studies was
discussed in Chapter 4, however, it is also argued here that the research community
should have a greater impact on the design of evaluation policies by using the
knowledge base of EER and its methodological advances to build teacher and
school evaluation mechanisms. Different mechanisms and evaluation processes
should be designed in order to achieve the formative purpose of evaluation which
aims to contribute to the improvement of teaching quality and the functioning of
schools. For accountability reasons, other evaluation mechanisms and evaluation
processes should also be considered. For example, in cases where multiple sources
of data are used to collect data for summative evaluation, researchers should make
use of different measurement theories to find out whether a unidimensional
psychometrically appropriate scale can be developed in order to allow comparisons
among schools and/or teachers. This is a topic that reveals that the methodological
and conceptual advances within EER should be seen as related to each other in
order to generate valid suggestions for the development of reform policies 
in evaluation. Finally, researchers can investigate the extent to which EER can be
used to inform and evaluate the impact of school improvement initiatives and
educational policy reforms to enhance our understanding of the processes of
educational and institutional change.

Based on the description of the research topics associated with each area of
investigation and by taking into account the theoretical and methodological
developments of EER presented in this book, we argue that the field is mature
enough not only to develop its theoretical models further (first area of
investigation) but also to undertake studies addressing topics associated with 
the second area of investigation. In Chapter 4, the importance of using an
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evidence-based and theory-driven approach to school improvement was stressed.
It is argued here that we need various projects investigating under which
conditions schools can make use of the knowledge base of EER in order to
improve their effectiveness. In this respect, experimental and longitudinal studies
have to be designed, and the impact of this type of approach to school improve-
ment has to be compared with other approaches currently used within the field
of school improvement. With regard to the third area of investigation, it is
acknowledged that there are some difficulties for those engaged in EER in
affecting the development of educational policy. This is due to the political
dimension of evaluation, implying that reforms in evaluation policy are unlikely
to be based on only research-validated knowledge since any reform is very likely
to cause changes in the power relations within any educational system (Kyriakides
and Demetriou 2007; Hoyle and Skrla 1999). Nonetheless, there have been
some examples of teacher and school effectiveness studies influencing education
reforms in England (Sammons 2008) particularly in approaches to the improve-
ment of poorly performing schools and literacy and numeracy teaching. This
remains an area for further study.

The description of different research topics that are situated within the three
research areas concerned with the conceptual development and the knowledge
base of educational effectiveness reveals that there is also a need to develop further
our methodological approaches and techniques. In this book, it has been shown
that advancements in the methodology of research have helped us to study the
processes of effectiveness and raise more complex research questions about the
nature of the impact that effectiveness factors can have on student achievement.
We believe that future research can make use of such EER approaches and
instruments and develop them further by using more complicated techniques to
study different educational effects. For example, the effect of schooling can be
examined by using both the regression discontinuity approach and cross-sectional
data. Further, both direct and indirect effects of school factors can be investigated
by using multilevel SEM approaches. Another topic that needs to be considered
is the use of a broader range of student outcomes covering new educational
goals that can be achieved by making use of measurement theories such as
Generalizability Theory and IRT to develop psychometrically appropriate instru-
ments and relevant measurement scales.

Finally, further advances in research designs and methodology are underway
within the social sciences and will help us within EER to develop and test
theories of educational effectiveness and educational change, which will contribute
to the improvement of policy and practice at both the school and the system
level. We hope that this book has increased awareness of the focus of EER, has
increased understanding of the growing suite of methodological approaches that
are available and has highlighted key issues that require consideration in designing
EER studies. We have sought to stress the importance of theory-driven research
designs, the use of appropriate techniques, and we have suggested a range of
topics for further study in this important and growing field.
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Appendices to Chapter 10

Appendix A

Sample GENOVA programs

Program with raw data input

1 GSTUDY P X I DESIGN – RANDOM MODEL
2 OPTIONS RECORDS 2
3 EFFECT *P 5 0

+I 5 0
4 FORMAT (5f2.0)
5 PROCESS
. data set placed here

20 COMMENT D STUDY CONTROL CARDS
21 COMMENT FIRST D STUDY
22 DSTUDY #1  – PI DESIGN  I RANDOM
23 DEFFECT $  P
24 DEFFECT I   1   5   10   20
26 DCUT
27 ENDSTUDY
28 FINISH

Program with mean squares as input

1 GMEANSQUARES PI DESIGN
2 MEANSQUARE P 9.48 20
3 MEANSQUARE I 6.34 5
4 MEANSQUARE PI 0.84
5 ENDMEAN

20 COMMENT D STUDY CONTROL CARDS

. same as above D studies
28 FINISH



Program with variance components as input

1 GCOMPONENTS PI DESIGN
2 VCOMPONENT P 1.73 30
3 VCOMPONENT I 0.27 5
4 VCOMPONENT PI 0.84
5 ENDCOMP

20 COMMENT D STUDY CONTROL CARDS
. same as above D studies

28 FINISH

Appendix B

SAS PROC VARCOMP setup program for
estimating variance components in two-facet
study

DATA EXAMPLE;
INPUT PERSON RATER SUBJECT SCORE;
PROC ANOVA;
CLASS PERSON RATER SUBJECT;
MODEL SCORE = PERSON|RATER|SUBJECT;
PROC VARCOMP METHOD = REML;
CLASS RATER OCCASION PERSON;
MODEL RATING = RATER|OCCASION|PERSON;

Appendix C

Example LISREL program code to examine
two-facet model

LISREL CODE TO ESTIMATE THE G-COEFFICIENT IN A TWO-FACET
CROSSED DESIGN
DA NI = 8 NO = 50 ! (SEE MARCOULIDES, 1996, P. 295)
CM
10
3 10
3 3 10
3 3 3 10
3 2 2 2 10
2 3 2 2 3 10
2 2 3 2 3 3 10
2 2 2 3 3 3 3 10
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MO NY = 8 NE = 16 BE = FU,FI PS = DI,FR TE = ZE
LA
R1O1 R2O1 R3O1 R4O1 R1O2 R2O2 R3O2 R4O2
LE
Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 PERSONS RATER1 RATER2 RATER3 C
RATER4 OCCASN1 OCCASN2 Y
FI PS(16) ! NO RESIDUAL ATTACHED TO DUMMY VARIABLE FOR
SCALE SCORE Y
EQ PS(1)-PS(8)
VA 1 LY 1 1 LY 2 2 LY 3 3 LY 4 4 LY 5 5 LY 6 6 LY 7 7 LY 8 8
VA 1 BE 1 9 BE 2 9 BE 3 9 BE 4 9 BE 5 9 BE 6 9 BE 7 9 BE 8 9
VA 1 BE 16 1 BE 16 2 BE 16 3 BE 16 4 BE 16 5 BE 16 6 BE 16 7 BE 16 8 
VA 1 BE 1 10 BE 2 10 BE 3 10 BE 4 10 BE 5 11 BE 6 11 BE 7 11 BE 8 11 
VA 1 BE 1 12 BE 2 13 BE 3 14 BE 4 15 BE 5 12 BE 6 13 BE 7 14 BE 8
OU ALL! CORRELATION BETWEEN (TRUE SCALE SCORE, SCALE
SCORE) PROVIDE IN OUTPUT
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Appendices to Chapter 12

Appendix A

Example CFA model Mplus input statements

TITLE: CFA MODEL OF ACHIEVEMENT AND MOTIVATION
DATA: FILE = DATA.COV;

TYPE = COVARIANCE;
NOBS = 250;

VARIABLE: NAMES = X1 X2 X3 X4 X5 X6;
MODEL: ACH BY X1*1 X2 X3;

MOT BY X4*1 X5 X6;
F1-F2@1;

OUTPUT: MODINDICES;

Appendix B

Example structural regression model Mplus
input statements

TITLE: STRUCTURAL REGRESSION MODEL
DATA: FILE = DATA.COV;

TYPE = COVARIANCE;
NOBSERVATIONS = 300;

VARIABLE: NAMES ARE X1 X2 X3 X4 X6 X8 X7 Y1 Y2 Y3 Y4 Y5;
MODEL: SC BY X1 X2 X3 X4;

CP BY X5 X6;
SACH BY Y1 Y2;
SATT BY Y3 Y4 Y5;
SACH ON SC CP SATT;
SATT ON SC CP;

OUTPUT: MODINDICES;



Appendix C

Level and shape model Mplus input statements

TITLE: LEVEL AND SHAPE MODEL
DATA: FILE = DATA;

TYPE = MEANS COVARIANCE;
NOBSERVATIONS = 130;

VARIABLE: NAMES ARE Y1 Y2 Y3 Y4 Y5 Y6 Y7;
ANALYSIS: TYPE = MEANSTRUCTURE;
MODEL: I S|Y1@0 Y2 Y3 Y4 Y5 Y6 Y7@1;
OUTPUT: RESIDUAL;
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